1.Cho tứ giác ABCD có A=125: B = 55. CM 2 đường phân giác của góc C và D vuông góc vs nhau
2. Cho tứ giác ABCD có A-B=50. Các tia phân giác của C và D cắt nhau tại I và góc CID=115. Tính A và B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác DIC ta có ˆIDCIDC^+ˆICDICD^=180-115=65 độ
=>ˆADBADB^+ˆBCDBCD^=2.65=130
=>ˆDABDAB^+ˆABCABC^=360-130=230
kết hợp điều kiên ta có hệ:{A+B=230A−B=50{A+B=230A−B=50
A=140 và B=90
CID = 115 . Tổng 2 góc ICD và góc IDC = 65 độ . Ta tính tổng 2 góc C và D là 65 x 2 = 130 độ . 2 góc A và B là 230 độ luôn . Ta chỉ thấy có góc A = 140 độ và góc B = 90 độ mới phù hợp
ta có góc IDC+góc ICD=180o-góc DIC=180o-115o=65o
hay \(\frac{gócD+gócC}{2}=65^o=>gócD+gócC=65.2=130^o\)
tứ giác ABCD có góc A+góc B+góc C+góc D=360o.
hay góc A+góc B=130o=360o
=>góc A+góc B=360-130=230o (1)
theo đề bài lại có góc A-góc B=50o (2)
từ 1 và 2 suy ra :
góc A=(230+50)/2=140o
góc B=(230-50)/2=90o
xét tam giác DIC ta có \(\widehat{IDC}\)+\(\widehat{ICD}\)=180-115=65
=>\(\widehat{ADB}\)+\(\widehat{BCD}\)=2.65=130
=>\(\widehat{DAB}\)+\(\widehat{ABC}\)=360-130=230
kết hợp điều kiên ta có hệ:\(\begin{cases}A+B=230\\A-B=50\end{cases}\)
A=140 và B=90
ta có :\(\widehat{DIC}=180^0-\widehat{CDI}-\widehat{DCI}=180^0-\frac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)=115^o\)
Vậy \(\left(\widehat{ADC}+\widehat{BCD}\right)=150^o\Rightarrow\widehat{A}+\widehat{B}=360^0-\left(\widehat{ADC}+\widehat{BCD}\right)=210^0\)
ta có :\(\widehat{A}=\frac{50^0+210^0}{2}=130^0\)
\(\widehat{B}=\frac{210^0-50^0}{2}=80^0\)