Cho ΔABC cân tại A và hai đường trung tuyến BM, CN cắt nhau tại I.
a) Chứng minh ΔBNC = ΔCMB. Từ đó suy ra ΔBIC cân tại I.
b) Gọi K là trung điểm của BC. Chứng minh A, I, K thẳng hàng
c) Chứng minh BC < 4.IM
làm gấp hộ mình với ạ huhu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACN có
AB=AC
góc A chung
AM=AN
=>ΔABM=ΔACN
b: Xét ΔABC có
BM,CN là trung tuyến
BM cắt CN tại I
=>I là trọng tam
=>H là trung điểm của BC
ΔABC cân tại A
mà AH là trung tuyến
nên AH vuông góc BC
a) Xét ∆BNC và ∆CMB có:
ABC = ACB ( ∆ABC cân tại A )
BC là cạnh chung
BN = CM ( N,M là trung điểm AB,AC và AB=AC )
∆BNC = ∆CMB (c_g_c)
b) Xét ∆AMB và ∆ANC có:
BAC là góc chung
AN=AM ( giải thích như trên )
AB=AC ( ∆ABC cân tại A )
∆AMB = ∆ANC ( c g c )
Có ^ ABM = ACN
Mà ABC = ACB
KBC = KCB
∆KBC cân tại K c) Ta có:
N là trung điểm AB
M là trung điểm AC
MN là đường trung bình ∆ABC cân
MN // BC xong rùii đó
a: Xét ΔBNC và ΔCMB có
NB=MC
\(\widehat{NBC}=\widehat{MCB}\)
BC chung
Do đó: ΔBNC=ΔCMB
b: Ta có: ΔBNC=ΔCMB
nên \(\widehat{KCB}=\widehat{KBC}\)
=>ΔKBC cân tại K
hay KB=KC
\(a,\left\{{}\begin{matrix}AN=NB\\AM=MC\end{matrix}\right.\Rightarrow MN\) là đtb tam giác ABC
\(\Rightarrow MN//BC\Rightarrow BNMC\) là hình thang
\(b,\) G là giao điểm 2 trung tuyến tam giác ABC nên là trọng tâm tam giác ABC
Mà AI cũng là trung tuyến tam giác ABC nên \(G\in AI\) hay A,I,G thẳng hàng
\(c,\left\{{}\begin{matrix}AM=MC\\BI=IC\end{matrix}\right.\Rightarrow MI\) là đtb tam giác ABC \(\Rightarrow MI=\dfrac{1}{2}AB\Rightarrow2AB=MI\)
\(d,\left\{{}\begin{matrix}BH=HG\\CK=KG\end{matrix}\right.\Rightarrow HK\) là đtb tam giác BGC
\(\Rightarrow HK=\dfrac{1}{2}BC=MN\) ( MN là đtb tam giác ABC)
a. vì tam giác ABC cân tại A
=> AB = AC
=> góc ABC = góc ACB
BM và CN là 2 đường trung tuyến của tam giác ABC
=> N và M lần lượt là trung điểm của AB và AC
=> AN = BN
AM = CM
mà AB = AC
=> AN = BN = AM = CM
Xét tam giác BNC và tam giác CMB:
BC chung
góc ABC = góc ACB (cmt)
BN = CM (cmt)
=> tam giác BNC = tam giác CMB (c-g-c) (đpcm)
b. tam giác BNC = tam giác CMB (cmt)
=> BM = CN ( 2 cạnh tương ứng)
mà BM giao CN tại K
=> K là trọng tâm của tam giác ABC
=> BK = CK
Xét Δ AKB và Δ AKC:
AK chung
AB = AC (cmt)
BK = CK (cmt)
=> Δ AKB = Δ AKC (c-c-c)
=> góc BAK = góc CAK (2 góc tương ứng)
=> AK là tia phân giác góc BAC
=> AK là đường trung trực của Δ ABC
=> AK ⊥ BC (đpcm)
c. Vì AK (AH) ⊥ BC
=> tam giác ABH vuông tại H
mà AH là đường trung trực của tam giác ABC
=> BH = CH = \(\dfrac{BC}{2}=\dfrac{6}{2}=3cm\)
Áp dùng định lí Py - ta - go vào tam giác ABH:
AB2 = BH2 + AH2
52 = 32 + AH2
AH2 = 52 - 32 = 25 - 9 = 16
=> AK = 4cm (AH > 0)
a. +) Tam giác ABC cân tại A:
=> góc B = góc C
=> AB = AC
=> AM + BM = AN + CN
mà BM và CN là 2 đường trung tuyến của AB và AC
=> AM = BM = AN = CN
Xét tam giác BNC và tam giác CMB:
BM = CN (cmt)
góc B = góc C (cmt)
BC chung
=> tam giác BNC = tam giác CMB (c-g-c)
+) Ta có: BM , CN là 2 đường trung tuyến của tam giác ABC, cắt nhau tại I
=> I là trọng tâm của tam giác ABC
=> BI = \(\dfrac{2}{3}BM\)
CI = \(\dfrac{2}{3}CN\)
mà BM = CN
=> BI = CI
=> tam giác BIC cân tại I (đpcm)
b. +)Xét tam giác AIB và tam giác AIC:
AI chung
AB = AC
BI = CI
=> tam giác AIB = tam giác AIC (c-c-c)
=> góc BAI = góc CAI (2 góc tương ứng)
=> AI là tia phân giác góc A (1)
+) Xét tam giác AKB và tam giác AKC:
AK chung
AB = AC
BK = CK (vì K là trung điểm BC)
=> tam giác AKB = tam giác AKC (c-c-c)
=> AK là tia phân giác góc A (2)
Từ (1) và (2) , suy ra:
AI trùng AK
=> A, I, K thẳng hàng