Output của bài toán giải phương trình bậc hai ax2 + by + c = 0 (a khác 0) là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x1+x2=-b/a; x1x2=c/a
=>2x1+2x2=-2b/a; 4x1x2=4c/a
=>PT cần tìm là x^2+2b/a*x+4c/a=0
Phương trình ax^2+bx+c=0(a≠0) thỏa mãn điều kiện a+b+c=0 thì có 1 nghiệm x1=1, nghiệm kia x2=c/a
Bước 1. Biến đổi phương trình về đúng dạng \(ax^2+bx+c=0\)
Bước 2. Nếu hệ số a chứa tham số, ta xét 2 trường hợp:
- Trường hợp 1: a = 0, ta giải và biện luận ax + b = 0.
- Trường hợp 2: a ≠ 0. Ta lập Δ = b2 - 4ac. Khi đó:
+ Nếu Δ > 0 thì phương trình có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\)
+ Nếu Δ = 0 thì phương trình có 1 nghiệm (kép): \(x=\dfrac{-b}{2a}\)
+ Nếu Δ < 0 thì phương trình vô nghiệm.
Bước 3. Kết luận.
Lưu ý:
- Phương trình \(ax^2+bx+c=0\) có nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right..hoặc.\left\{{}\begin{matrix}a\ne0\\\Delta\ge0\end{matrix}\right.\)
- Phương trình \(ax^2+bx+c=0\) có nghiệm duy nhất \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right..hoặc.\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
Output: nghiệm của phương trình