K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

2p - 1 = ( p - 1 ) . ( p + 1 ) 

p là số nguyên tố lớn hơn 3 => p không chia hết cho 2 ; 3 

Ta có : p không chia hết cho 2 

=> p - 1 và p + 1 là hai số chẵn liên tiếp => ( p - 1 ) . ( p + 1 ) chia hết cho 8 ( 1 ) 

Lại mặt khác ta có : p không chia hết cho 3 

Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 => ( p - 1 ) . ( p + 1 ) chia hết cho 3 

Tương tự ta có : Nếu p = 3k + 2 thì p + 1 = 3k + 3 chia hết cho 3 => ( p - 1 ) . ( p + 1 ) chia hết cho 3 (2)

Từ ( 1 ) và ( 2 ) => 2p - 1 chia hết cho 8 cho 3 mà ( 8; 3 ) = 1 => 2p - 1 chia hết cho .............

6 tháng 9 2016

l-i-k-e nah

6 tháng 9 2016

Mình nghĩ là đề bài thế này : Chứng minh rằng: Nếu P là số nguyên tố lớn hơn 3 thì (P-1).(P+1) chia hết cho 24
                      BÀI GIẢI
P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 và 3 
Ta có : P không chia hết cho 2 
=> P - 1 và P + 1 là 2 số chẵn liên tiếp => ( P - 1 )( P + 1 ) chia hết cho 8 ( 1 )'
Mặt khác : P không chia hết cho 3 
Nếu P = 3k + 1 thì P - 1 chia hết cho 3k => ( P - 1 )( P + 1 ) chia hết cho 3 ( 2 )
Từ ( 1 ) và ( 2 ) => ( P - 1 )( P + 1 ) chia hết cho 8 và chia hết cho 3 mà ( 8 ; 3 ) = 1 => ( P - 1 )( P + 1 ) chia hết cho 24.

11 tháng 2 2016

bai toan nay kho qua

6 tháng 1 2021

Sửa lại đề bài : 

Cho p là số nguyên tố lớn hơn 3. Biết 2p + 1 cũng là số nguyên tố.

Chứng minh rằng: p + 1 chia hết cho 6.

                                                                    Bài Giải 

Ta chứng minh p + 1 ⋮2,3 

- Vì p là số nguyên tố lớn hơn 3 

=> p + 1 = 2k + 1 => p + 1 = 2k + 1 + 1 = 2k + 2 = 2 ( k + 1)

Mà : k + 1 ∈ N => 2 ( k + 1 ) ⋮2 (1)

- Vì p là số nguyên tố lớn hơn 3 

=> p = 3k + 1 hoặc p = 3k + 2 

+ Trường hợp 1 : p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 = 3 ( k + 1 ) 

Mà : k + 1 ∈ N ; p > 3 => k ≥ 1 => 3 ( k + 1 ) là hợp số 

=> p + 2 là hợp số ( vô lý ) 

=> p = 3k + 2 => p + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) 

Mà : k + 1 ∈ N => 3 ( k + 1 ) ⋮3 hay p + 1 ⋮3 (2)

Từ (1) và (2) => p + 1 ⋮6 (đpcm)

9 tháng 7 2019

1) 

+) a, b, c là các số nguyên tố lớn hơn 3

=> a, b, c sẽ có dạng 3k+1  hoặc 3k+2

=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 3

=> (a-b)(b-c)(c-a) chia hết cho 3 (1)

+) a,b,c là các số nguyên tố lớn hơn 3 

=> a, b, c là các số lẻ và không chia hết cho 4

=> a,b, c sẽ có dang: 4k+1; 4k+3

=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 4

th1: Cả 3 số chia hết cho 4

=> (a-b)(b-c)(c-a) chia hết cho 64   (2)

Từ (1); (2) => (a-b)(b-c)(c-a) chia hết cho 64.3=192  vì (64;3)=1

=> (a-b)(b-c)(c-a) chia hết cho 48

th2: Có 2 số chia hết cho 4, Số còn lại chia hết cho 2

=> (a-b)(b-c)(c-a) chia hết cho 32  (3)

Từ (1) , (3) 

=> (a-b)(b-c)(c-a) chia hết cho 32.3=96  ( vì (3;32)=1)

=>  (a-b)(b-c)(c-a) chia hết cho 48

Th3: chỉ có một số chia hết cho 4, hai số còn lại chia hết cho 2

=>  (a-b)(b-c)(c-a) chia hết cho 16

Vì (16; 3)=1

=>  (a-b)(b-c)(c-a) chia hết cho 16.3=48

Như vậy với a,b,c là số nguyên tố lớn hơn 3

thì  (a-b)(b-c)(c-a) chia hết cho 48

22 tháng 11 2017

Ta có: A = n2 - 1 = (n - 1)(n + 1)

Vì n là số nguyên tố lớn hơn 3 nên (n - 1)(n + 1) là tích hai số chẵn liên tiếp => A \(⋮\) 8 (1)

Vì n là số nguyên tố lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2 (k thuộc N)

- Nếu n = 3k + 1 thì:

A = (n - 1)(n + 1) = (3k + 1 - 1)(3k + 1 + 1) = 3k(3k + 2) \(⋮\) 3

- Nếu n = 3k + 2 thì:

A = (n - 1)(n + 1) = (3k + 2 - 1)(3k + 2 + 1) = (3k + 1)(3k + 3) = 3(3k + 1)(k + 1) \(⋮\) 3

Từ hai trường hợp trên ta có A \(⋮\) 3 (2)

Mà (8,3) = 1 (3)

Từ (1),(2),(3) => \(A⋮24\)