Một tam giác có độ dài ba cạnh đều là số nguyên. Cạnh lớn nhất bằng 7cm, cạnh nhỏ nhất bằng 2cm. Khi đó cạnh còn lại của tam giác cạnh còn lại của tam giác là: A. 3cm B. 4cm C. 5cm D. 6cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng Bđt tam giác, ta được:
7-2<a<7+2
\(\Leftrightarrow5< a< 9\)
hay \(a\in\left\{6;7;8\right\}\)
b) Trường hợp 1: Độ dài cạnh bên còn lại là 1cm
=> Trái với BĐT tam giác vì 1cm+1cm<4cm
Trường hợp 2: Độ dài cạnh bên còn lại là 4cm
=> Đúng với BĐT tam giác vì 4cm+4cm>1cm; 4cm+1cm>5cm
Chu vi tam giác là:
4cm+4cm+1cm=9(cm)
Gọi x,y,z là ba cạnh của tam giác (x,y,z > 0)
Gỉa sử x,y,z tỉ lệ thuận với 3 ;5;7 ta có: x 3 = y 5 = z 7
Thì x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác . Khi đó theo bài ta có x + z - y = 20
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x 3 = y 5 = z 7 = x + y − z 3 − 5 + 7 = 20 5 = 4
Do đó x = 4.3 = 12
Vậy cạnh nhỏ nhất của tam giác là 12m
Đáp án cần chọn là B
Gọi x,y,z là ba cạnh của tam giác (x,y,z > 0)
Gỉa sử x,y,z tỉ lệ thuận với 3;4;5 ta có: x 3 = y 4 = z 5
Thì x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác . Khi đó theo bài ta có x + z - y = 16
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x 3 = y 4 = z 5 = x + y − z 3 − 4 + 5 = 16 4 = 4
Do đó x = 4.3 = 12
Vậy cạnh nhỏ nhất của tam giác là 12m
Đáp án cần chọn là B
Gọi cạnh còn lại là a(Điều kiện: \(a\in Z^+\))
Áp dụng bất đẳng thức tam giác, ta có: \(5-2< a< 5+2\)
\(\Leftrightarrow3< a< 7\)
\(\Leftrightarrow a\in\left\{4;5;6\right\}\)
mà a là số lẻ
nên a=5
Vậy: Độ dài cạnh còn lại của tam giác là 5cm
Tam giác đó là tam giác cân
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+c-b}{2+5-4}=\dfrac{20}{3}\)
Do đó: a=40/3; b=80/3; c=100/3
Giả sử ΔABC có AB = 7cm, AC = 2cm.
Theo định lý và hệ quả của bất đẳng thức tam giác, ta có:
AB - AC < BC < AB + AC
⇒ 7 - 2 < BC < 7 + 2 ⇔ 5 < BC < 9
Vì số đo cạnh BC là một số tự nhiên lẻ nên BC = 7 (cm)
C
D