K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2022

lỗi ạ :> cả 2 hình bên dưới :> 

9 tháng 2 2018

19 tháng 5 2022

a,

Ta có :

Δ ABC vuông tại A

Mà AI là đường trung tuyến của BC

=> AI = BI = IC

Xét Δ AIB, có :

AI = BI (cmt)

=> Δ AIB cân tại A

Xét Δ AIC, có :

AI = AC (cmt)

=> Δ AIC cân tại I

a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)

\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AM=MB=AN=NC

Xét ΔAMO vuông tại M và ΔANO vuông tại N có 

AO chung

AM=AN(cmt)

Do đó: ΔAMO=ΔANO(cạnh huyền-cạnh góc vuông)

b) Ta có: ΔAMO=ΔANO(cmt)

nên \(\widehat{MAO}=\widehat{NAO}\)(hai góc tương ứng)

hay \(\widehat{BAH}=\widehat{CAH}\)

mà tia AH nằm giữa hai tia AB,AC

nên AH là tia phân giác của \(\widehat{BAC}\)

c) Xét ΔAHB và ΔAHC có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}=\widehat{CAH}\)(cmt)

AH chung

Do đó: ΔAHB=ΔAHC(c-g-c)

Suy ra: HB=HC(hai cạnh tương ứng)

Ta có: ΔAHB=ΔAHC(cmt)

nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên  \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

hay \(AH\perp BC\)(đpcm)

22 tháng 2 2021

Hình vẽ : tự vẽ

a) Ta có : tan giác ABC cân tại A ( gt )

\(\Rightarrow\) \(\left\{{}\begin{matrix}AB=AC\\\widehat{B}=\widehat{C}\end{matrix}\right.\)( t/c \(\Delta\) cân )

  Ta có : AB = AC ( cmt )

Mà : M là trung điểm của AB ( gt ), N là trung điểm của AC ( gt )

 \(\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}AC\)

\(\Rightarrow AM=AN\)

Xét : \(\Delta\)AMO và \(\Delta\)ANO có

Cạnh AO chung

AM =AN (cmt )

 \(\widehat{AMO}=\widehat{ANO}=90^0\left(CM\perp AB,BN\perp AC\right)\)

\(\Rightarrow\Delta AMO=\Delta ANO\left(ch-cgv\right)\)

b) Có \(\Delta AMO=\Delta ANO\left(cmt\right)\)

\(\Rightarrow\widehat{MAO}=\widehat{NAO}\) ( 2 cạnh tương ứng ) 

Ta có :

\(\widehat{MAO}=\widehat{NAO}\left(cmt\right)\)

Mà : Tia AH nằm giữa tia AB và tia AC

\(\Rightarrow\) AH là tia phân giác của \(\widehat{A}\) ( đpcm )

c) Ta có : 

\(\Delta ABC\) cân tại A ( gt ), AH là tia phân giác của \(\widehat{A}\) ( cmt )

\(\Rightarrow\) AH cùng là đường cao và trung truyến

\(\Rightarrow\left\{{}\begin{matrix}AH\perp BC\\HB=HC\end{matrix}\right.\)( tính chất đường cao và trung tuyến )

d) Ta có :

 \(AH\perp BC\left(cmt\right)\)

\(\Rightarrow\widehat{OHC}=90^0\)

\(\Rightarrow\)OC lớn hơn HC

Mà HC = HB ( cmt )

\(\Rightarrow\) OC lớn hơn HB ( đpcm )

                                                             -Hết-

8 tháng 5 2017

A B C M N D E

a. Do ABC là tam giác cân tại A nên AB = AC hay AN = NB = CM = MA.

Xét tam giác AMB và ANC có:

AM = AN; AB = AC; góc A chung nên \(\Delta AMB=\Delta ANC\left(c-g-c\right)\)

b. Từ câu a, \(\widehat{ABM}=\widehat{ACN}\) (Hai góc tương ứng)

Mà tam giác ABC cân tại A nên \(\widehat{B}=\widehat{C}\)

Suy ra \(\widehat{DBC}=\widehat{DCB}\) hay tam giác BDC cân tại D.

c. Ta thấy \(\Delta ABE\) và \(\Delta ACE\) có : \(\widehat{B}=\widehat{C}=90^o;\) AB = AB; AE chung

nên \(\Delta ABE\)\(\Delta ACE\left(ch-cgv\right)\Rightarrow EB=EC\)

Ta thấy AB = AC, DB = DC, EB = EC nên A, D, E cùng thuộc đường trung trực của BC. Vậy chúng thẳng hàng.

a, tứ giác AKHM có

∠AHM= ∠AKM =∠HAK ( =90 )

⇒ tứ giác AKHM là hình chữ nhật 

b)Ta có tam giác ABC có M trug điểm BC

NH vuông góc vs AB=> MH// AC và MH =1/2 AC

Cmtt K là trung điểm AC

=> HK là đg tb của tam giác ABC=> HK//B M   Ta có HB= MK( Cùng=HA) => tứ giác BHKM là hình bình hành

c)Ta có EF là đường tb tam giác MHK

=> EF//HK 

EF// HK và EF=1/2 HK

GỌI O LÀ GIAO ĐIỂM CỦA HK VÀ AM

EF= HO= KO

Mà HO= HI+IO

=> KO=JO+KJ

Mà IO= JO=> HI= KJ

d) Dễ thấy EF =1/3 AB= 4 căn 3 /3

9 tháng 2 2021

Giải thích các bước giải:

Ta có :MA=MB,MO⊥AB→MO là trung trực của AB

Tương tự NO là trung trực AC→OA=OB=OC

Mà ΔABC cân tại A→AB=AC→ΔOAB=ΔOAC(c.c.c)

→BAO^=OAC^→AO là phân giác góc A

→AH là phân giacs góc A

Kết hợp ΔABC cân tại A

9 tháng 2 2021

Ta có :MA=MB,MO⊥AB→MO là trung trực của AB

Tương tự NO là trung trực AC→OA=OB=OC

Mà ΔABC cân tại A→AB=AC→ΔOAB=ΔOAC(c.c.c)

→BAO^=OAC^→AO là phân giác góc A

→AH là phân giacs góc A

Kết hợp ΔABC cân tại A