cho tam giác abc có b (-4,0) đường cao kẻ từ a : -4x+3y+2=0 và đường trung tuyến kẻ từ đỉnh ccos phương trình :4x+y+3=0
a)lập hương trình các cạnh của tam giác abc
b) tính diện tích tam giác
giúp mình với ạ mình đang cần gấp lắm luôn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giao điểm của \(d_1;d_2\) là nghiệm: \(\left\{{}\begin{matrix}5x+4y-1=0\\8x+y-7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(\Rightarrow\) Đây là đỉnh A hoặc B (do tọa độ khác tọa độ C)
Không mất tính tổng quát, giả sử \(A\left(1;-1\right)\)
\(\Rightarrow\) Đường cao AH ứng với BC có pt là 5x+4y-1=0
Do AH vuông góc BC nên BC nhận (4;-5) là 1 vtpt
Phương trình BC:
\(4\left(x-3\right)-5\left(y-5\right)=0\Leftrightarrow4x-5y+13=0\)
\(\overrightarrow{AC}=\left(2;6\right)=2\left(1;3\right)\Rightarrow\) AC nhận (3;-1) là 1 vtpt
Phương trình AC:
\(3\left(x-1\right)-1\left(y+1\right)=0\Leftrightarrow3x-y-4=0\)
B thuộc BC nên tọa độ có dạng: \(\left(b;\dfrac{4b+13}{5}\right)\)
Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{b+3}{2};\dfrac{2b+19}{5}\right)\)
M thuôc trung tuyến \(d_2\) qua A nên:
\(8\left(\dfrac{b+3}{2}\right)+\left(\dfrac{2b+19}{5}\right)-7=0\) \(\Rightarrow b=-2\)
\(\Rightarrow B\left(-2;1\right)\) \(\Rightarrow\overrightarrow{AB}=\left(-3;2\right)\)
Phương trình AB: \(2\left(x+2\right)+3\left(y-1\right)=0\Leftrightarrow2x+3y+1=0\)
Bạn coi lại đề, 2 đường thẳng xuất phát từ B nhưng lại song song với nhau, điều này hoàn toàn vô lý
1.
Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\2x-3y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=-3\end{matrix}\right.\)
\(\Rightarrow A\left(-5;-3\right)\)
Phương trình BC qua B và vuông góc đường cao kẻ từ A có dạng:
\(1\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow x+y-3=0\)
Gọi M là trung điểm BC thì tọa độ M thỏa mãn:
\(\left\{{}\begin{matrix}2x-3y+1=0\\x+y-3=0\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{8}{5};\dfrac{7}{5}\right)\)
M là trung điểm BC \(\Rightarrow C\left(\dfrac{6}{5};\dfrac{9}{5}\right)\)
2.
Do C thuộc AC nên tọa độ có dạng: \(C\left(c;2c+3\right)\)
Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{c+4}{2};\dfrac{2c+5}{2}\right)\)
M thuộc trung tuyến kẻ từ A nên:
\(\dfrac{c+4}{2}+\dfrac{2c+5}{2}-1=0\Leftrightarrow c=-\dfrac{7}{3}\)
\(\Rightarrow C\left(-\dfrac{7}{3};-\dfrac{5}{3}\right)\)
a: (d): 2x-y+3=0
=>y=2x+3
Vì (d') vuông góc với (d) nên 2a=-1
=>a=-1/2
Vậy: (d'): y=-1/2x+b
Thay x=3 và y=1 vào (d'), ta được:
b-3/2=1
hay b=5/2
Vậy: (d'): y=-1/2x+5/2
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x+3=-\dfrac{1}{2}x+\dfrac{5}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=-\dfrac{1}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=-\dfrac{2}{5}+3=\dfrac{13}{5}\end{matrix}\right.\)
Do BC vuông góc đường cao AH kẻ từ A nên BC nhận (3;4) là 1 vtpt
Phương trình BC:
\(3\left(x+4\right)+4\left(y-0\right)=0\Leftrightarrow3x+4y+12=0\)
C là giao điểm BC và trung tuyến kẻ từ C nên tọa độ C là nghiệm:
\(\left\{{}\begin{matrix}4x+y+3=0\\3x+4y+12=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\end{matrix}\right.\) \(\Rightarrow C\left(0;-3\right)\)
Gọi M là trung điểm AB \(\Rightarrow M\) thuộc trung tuyến kẻ từ C nên tọa độ M có dạng: \(M\left(m;-4m-3\right)\)
Áp dụng công thức trung điểm: \(\left\{{}\begin{matrix}x_A=2x_M-x_B=2m+4\\y_A=2y_M-y_B=-8m-6\end{matrix}\right.\)
Do A thuộc -4x+3y+2=0 nên:
\(-4\left(2m+4\right)+3\left(-8m-6\right)+2=0\Rightarrow m=-1\) \(\Rightarrow A\left(2;2\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(-6;-2\right)\Rightarrow\) đường thẳng AB nhận (1;-3) là 1 vtpt
Phương trình AB:
\(1\left(x+4\right)-3\left(y-0\right)=0\Leftrightarrow x-3y+4=0\)
\(\overrightarrow{AC}=\left(-2;-5\right)\Rightarrow\) đường thẳng AC nhận (5;-2) là 1 vtpt
Phương trình AC:
\(5\left(x-2\right)-2\left(y-2\right)=0\Leftrightarrow5x-2y-6=0\)
b.
Ta có: \(\overrightarrow{AB}=\left(-6;-2\right)\Rightarrow AB=\sqrt{\left(-6\right)^2+\left(-2\right)^2}=2\sqrt{10}\)
Gọi H là chân đường cao hạ từ C xuống AB
\(\Rightarrow CH=d\left(C;AB\right)=\dfrac{\left|0-\left(-3\right).3+4\right|}{\sqrt{1^2+\left(-3\right)^2}}=\dfrac{13\sqrt{10}}{10}\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}CH.AB=13\)