cho tam giác ABC vuông ở A, AB=6, AC=8; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.
a) Tính AD, DC.
b) Chứng minh IH*DC=IA*AD
c) Chúng minh AB*BI=BD*HB và tam giác AID cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
c: BA/BH=BC/BA
=>BA^2=BH*BC
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB∼ΔCAB(g-g)
a) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)
b) Xét \(\Delta HAB\) và \(\Delta HCA\) có:
\(\widehat{AHB}=\widehat{AHC}=90^0\)
\(\widehat{HAB}=\widehat{HCA}\) (cùng phụ với \(\widehat{B}\))
\(\Rightarrow\Delta HAB\sim\Delta HCA\) (g.g)
c) Em kiểm tra lại đề bài nhé.
AC=AB.tg B
AC= 30.\(\dfrac{8}{15}\)
AC= 16cm
BC2=AB2+AC2
BC2 = 900+256=1156
BC=34cm
Ta có: \(tgB=\dfrac{8}{15}\Rightarrow\dfrac{AC}{AB}=\dfrac{8}{15}\Rightarrow AC=\dfrac{8AB}{15}=\dfrac{8.30}{15}=16\left(cm\right)\)
Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) ( định lý Pytago)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{30^2+16^2}=34\left(cm\right)\)
Bài 6:
a: Xét tứ giác AKDH có
\(\widehat{AKD}=\widehat{AHD}=\widehat{KAH}=90^0\)
Do đó: AKDH là hình chữ nhật
b: Ta có: ΔABC vuông tại A
mà AD là đường trung tuyến
nên AD=BC/2=2,5(cm)
a. Tứ giác AKDH là hình chữ nhật , vì có góc \(DKA=KAH=DHA=90^o\)
b, áp dụng đl pytago vào tam giác vuông ABC có :
\(BC^2=AB^2+AC^2\Leftrightarrow BC=\sqrt{4^2+3^2}=5cm\)
vì AD là trung tuyến tam giác vuông ABC nên :
\(AD=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5cm\)
c,vì AKDH là hình chữ nhật nên : DH//KA
mà D là trung điểm BC
=>H là trung điểm AC
<=>AH=\(\dfrac{1}{2}AC=\dfrac{1}{2}.3=1,5cm\)
vì AH = 1,5 cm nên => KD cũng = 1,5cm (AKDH là hình chữ nhật)
\(S_{ABD}=\dfrac{1}{2}.AB.KD=\dfrac{1}{2}.4.1,5=3cm^2\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC vuông tại A có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{DA}{AB}=\dfrac{DC}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{DA}{6}=\dfrac{DC}{10}\)
mà DA+DC=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DA}{6}=\dfrac{DC}{10}=\dfrac{DA+DC}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{DA}{6}=\dfrac{1}{2}\\\dfrac{DC}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DA=3\left(cm\right)\\DC=5\left(cm\right)\end{matrix}\right.\)
Vậy: DA=3cm; DC=5cm