cho pt x^2+2(m-2)x m2=0 a ) voi gia trinao cua m thi pt co 2 ngiem phan biet. b) tim m de pt co 2 ngiem x1 va x2thoai x1^ va x2^=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: x^2+2(m-2)x+m^2=0
a: Δ=(2m-4)^2-4m^2
=4m^2-16m+16-4m^2=-16m+16
Để phương trình có hai nghiệm phân biệt thì -16m+16>0
=>m<1
b: Sửa đề: x1^2+x2^2=5
=>(x1+x2)^2-2x1x2=5
=>(2m-4)^2-2m^2=5
=>4m^2-16m+16-2m^2-5=0
=>2m^2-16m+11=0
=>\(m=\dfrac{8-\sqrt{42}}{2}\)(Vì m<1)
PT có 2 nghiệm phân biệt
\(\Leftrightarrow\text{Δ}>0\Leftrightarrow\left(2m\right)^2-4.\left(m+1\right)\left(m-1\right)>0\)
\(\Leftrightarrow4m^2-4\left(m^2-1\right)>0\Leftrightarrow4>0\)(luôn đúng)
Vậy PT luôn có 2 nghiệm phân biệt
Theo hệ thức Viét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{2m}{m+1}\\x_1.x_2=\dfrac{m-1}{m+1}\end{matrix}\right.\)
Mà theo GT thì ta có:
\(x_1^2+x_2^2=5\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=5\)
\(\Leftrightarrow\left(\dfrac{-2m}{m+1}\right)^2-2.\dfrac{m-1}{m+1}=5\)
\(\Leftrightarrow\dfrac{4m^2}{\left(m+1\right)^2}-\dfrac{2\left(m-1\right)}{m+1}=5\)
\(\Leftrightarrow\dfrac{1}{m+1}\left[\dfrac{4m^2}{m+1}-2\left(m-1\right)\right]=5\)
\(\Leftrightarrow\dfrac{2m^2+2}{m^2+2m+1}=5\)
\(\Leftrightarrow2m^2+2=5m^2+10m+5\)
\(\Leftrightarrow3m^2+10m+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{3}\\m=-3\end{matrix}\right.\)
Pt có 2 nghiệm khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta=m^2-4m\left(m-1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow0< m\le\dfrac{4}{3}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=\dfrac{m-1}{m}=1-\dfrac{1}{m}\end{matrix}\right.\)
\(A=x_1^2+x_2^2-6x_1x_2=\left(x_1+x_2\right)^2-8x_1x_2\)
\(A=1-8\left(1-\dfrac{1}{m}\right)=\dfrac{8}{m}-7\)
Do \(0< m\le\dfrac{4}{3}\Rightarrow\dfrac{8}{m}\ge\dfrac{8}{\dfrac{4}{3}}=6\)
\(\Rightarrow A\ge6-7=-1\)
\(A_{min}=-1\) khi \(m=\dfrac{4}{3}\)
Bạn ghi lại đề đi bạn