rút gọn biểu thức:
\(3x^2\cdot\left(2y-1\right)-2x^2\cdot\left(5y-3\right)-2x\cdot\left(x-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(A=\left(2x+y\right)^2-\left(2x-y\right)^2\)
\(=\left(2x+y-2x+y\right)\left(2x+y+2x-y\right)\)
\(=4x\cdot2y=8xy\)
b: Ta có: \(B=\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(2y-1\right)^2\)
\(=\left(3x+2+1-2y\right)^2\)
\(=\left(3x-2y+3\right)^2\)
Câu A) là \(\left(2x+y\right)^2-\left(y-2x\right)^2\)
Chứ ko phải là\(\left(2x+y\right)^2-\left(2x-y\right)^2\)
Nhưng dù sao thì cũng cảm ơn
\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)
\(=2a^2.2b^2-4a^2b^2=0\)
\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)
\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)
\(=\left[4-11x\right]^2\)
\(=16-88x+121x^2\)
chúc bn học tốt
1: \(=8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-2\left(4x+3\right)^2+8\left(x+3\right)^2\)
\(=24x^2+2-2\left(16x^2+24x+9\right)+8\left(x^2+6x+9\right)\)
\(=24x^2+2-32x^2-48x-18+8x^2+48x+72\)
=56
2: \(=\left(4x^2+4x+1\right)\left(x-1\right)-2\left(x^3-6x^2+12x-8\right)+x\left(3-2x\right)\left(3+x\right)-\left(3x-3\right)^2\)
\(=4x^3-3x-1-2x^3+12x^2-24x+16+x\left(9-3x-2x^2\right)-\left(3x-3\right)^2\)
\(=2x^3+12x^2-27x+15+9x-3x^2-2x^3-9x^2+18x-9\)
\(=6\)
\(\left(2x+1\right)^2\left(x-1\right)-2\left(x-2\right)^3+x\left(3-2x\right)\left(3+x\right)-\left(3x-3\right)^2\)
\(=\left(4x^2+4x+1\right)\left(x-1\right)-2\left(x^3-6x^2+12x-8\right)+x\left(9+3x-6x-2x^2\right)-\left(9x^2-18x+9\right)\)
\(=4x^3+4x^2+x-4x^2-4x-1-2x^3+12x^2-24x+16+9x+3x^2-6x^2-2x^3-9x^2+18x+9\)
\(=\left(4x^3-2x^2-2x^3\right)+\left(4x^2-4x^2+12x^2+3x^2-6x^2-9x^2\right)+\left(x-4x-24x+9x+18x\right)+\left(-1+16+9\right)\)
\(=24\)
Vậy...........
Chúc bạn học tốt!!!
1> 3x(x-2)-2x(2x-1)=(1-x)(1+x)
⇔\(3x^2\)-6x-\(4x^2\)+2x=1-\(x^2\)
⇔-1\(x^2\) - 4x= 1- \(x^2\)
⇔ -1\(x^2\) -4x+ \(x^2\) = 1
⇔-4x=1
⇔ x = \(\dfrac{-1}{4}\)
Khôi phục các đa thức sau:
1,\(\left(2x-\dfrac{3}{2}y\right)^2=4x^2-6xy+\dfrac{9}{4}y^2\)
2,\(\left(x+2y\right)^3=x^3+6x^2y+12xy^2+8y^3\)
3,\(\left(3x+5y\right)^2=9x^2+30xy+25y^2\)
4,\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=x^3-8y^3\)
1: \(=x^3-6x^2+12x-8-8x^3-36x^2-54x-27+7\left(x-1\right)^3\)
\(=-7x^3-42x^2-42x-35+7x^3-21x^2+21x-7\)
\(=-63x^2-21x-42\)
2: \(=x^3+125-\left(x^3-8\right)=125+8=133\)
3: \(=8x^3-27-8x^3-12x^2-6x-1=-12x^2-6x-28\)
1. \(\left(x+5\right)\left(x^2-5x+25\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3+125-\left(x^3-8\right)=x^3+125-x^3+8=133\)
1,
\(\left(x+5\right)\left(x^2-5x+25\right)-\left(x-2\right)\left(x^2+2x+4\right)\\ =\left(x^3+5^3\right)-\left(x^3-2^3\right)\\ =x^3+125-x^3+8\\ =\left(x^3-x^3\right)+\left(125+8\right)\\ =133\)
b,
\(\left(2x-3\right)\left(4x^2+6x+9\right)-\left(2x+1\right)^3\\ =\left[\left(2x\right)^3-3^3\right]-\left[\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x+1+1\right]\\ =\left(8x^3-27\right)-\left(8x^3+12x^2+6x+1\right)\\ =8x^3-27-8x^3-12x^2-6x-1\\ =\left(8x^3-8x^3\right)-\left(12x^2+6x\right)-\left(27+1\right)\\ =-6x\left(2x+1\right)-28\\ =\left(-2\right)\left[3x\left(2x+1\right)+14\right]\)