cho tam giác abc cân tại a.gọi d là trung điểm của bc.
a)Chứng minh tam giác abd=tam giác acd.
b)từ d kẻ de vuông góc với ab,df vuông góc với ac.chứng minh tam giác aef cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác ABD và tam giác ACD
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
AD : cạnh chung
Vậy tam giác ABD = tam giác ACD ( c.g.c )
b. ta có trong tam giác ABC đường trung tuyến cũng là đường cao
=> AD vuông BC
CD = BC : 2 = 12 : 2 =6cm
c.áp dụng định lý pitago vào tam giác vuông ADC
\(AC^2=AD^2+DC^2\)
\(AD=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
d.Xét tam giác vuông BDE và tam giác vuông CDF có:
AD = CD ( gt )
góc B = góc C
Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền . góc nhọn)
=> DE = DF ( 2 cạnh tương ứng )
=> tam giác DEF cân tại D
a) Tam giác ABD và tam giác ACD có:
BD = CD (Vì D là trung điểm của BC)
góc B = góc C
(vì tam giác ABC cân tại A)
AB = AC
Do đó: am giác ABD = tam giác ACD (c.g.c)
Suy ra: Góc ADB = góc ADC (cặp góc t/ứng)
b) Vì góc ADB = góc ADC (cmt) mà góc ADB + góc ADC 180 độ (2 góc kề bù)
nên góc ADB = 180 độ / 2 = 90 độ => AD vuông góc với BC
c) Ta có : BD + CD = BC ( Vì D nằm giữa B và C)
mà BC = 12 cm
=> CD = 12 /2 = 6 cm
Vì AD vuông góc với BC nên tam giác ADC vuông tại D
=> AC2AC2 = AD2AD2 +CD2CD2 (Định lý Pytago)
=> 10^2 = AD ^ 2 + 6 ^2
=> AD^2 = 64
=> AD = 8 (cm) (vì AD > 0 )
d) bạn c/m cho tam giác DEB = tam giác DFC (cạnh huyền - góc nhọn) nhé
=> DE = DF (cặp cạnh tương ứng) => tam giác DEF cân tại D( đn)
Hình nháp thôi em .
Ta có : \(\Delta ABC\) cân tại A
\(\Rightarrow\) góc ABC \(=\) góc ACB
Ta có : D là trung điểm của BC
\(\Rightarrow DB=DC\)
Xét \(\Delta BDE\) và \(\Delta CDF\) lần lượt vuông tại E và F có :
góc ABC \(=\) góc ACB (cmt)
\(DB=DC\left(cmt\right)\)
Do đó : \(\Delta BDE=\Delta CDF\left(ch-gn\right)\)
\(\Rightarrow DE=DF\)
\(\Rightarrow\Delta DEF\) cân tại D
a: Xét ΔABD vuông tại D và ΔACD vuông tại D có
AB=AC
AD chung
=>ΔABD=ΔACD
=>BD=CD
=>D là trung điểm của BC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF
=>ΔAEF cân tại A
c: CI+2AD
=3IK+2*3/2*AK
=3*(IK+AK)>3AI
a, Vì tam giác ABC cân tại A
AB = AC ( tính chất )
Xét tam giác ABH và tam giác ACD có
AB = AC
AD chung
BD=DC
suy ra 2 tam giác bàng nhau ( c.c.c) đúng ko ae
a. lỗi
b. Xét tam giác ABD và tam giác ACD:
AB = AC (tam giác ABC cân tại A)
AD chung
BD = CD ( D là trung điểm BC)
=> tam giác ABD = tam giác ACD (c-c-c)
=> góc BAD = góc CAD (2 góc tương ứng)
Xét tam giác AED và tam giác AFD:
AED = AFD (DE ⊥ AB
DF ⊥ AC)
góc BAD = góc CAD (cmt)
AD chung
=> tam giác AED và tam giác AFD (ch-gn) (đpcm)
a: Xét ΔABD và ΔACD co
AB=AC
BD=CD
AD chung
=>ΔABD=ΔACD
b: ΔABD=ΔACD
=>góc BAD=góc CAD
=>AD là phân giác của góc BAC
c: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
d: Xét ΔDEB vuông tại E và ΔDFC vuông tại F có
DB=DC
DE=DF
=>ΔDEB=ΔDFC
cần gấp
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)
Do đó: ΔAED=ΔAFD
Suy ra: AE=AF
hay ΔAFE cân tại A