Cho phương trình ( ẩn x ): x mũ 2 + 2(m+2)x +4m - 1= 0 (1)
a, giải phương trình (1) khi m=2
b, chứng minh rằng với mọi giá trị của m, phương trình (1) luôn có hai nghiệm phân biệt. Tìm một hệ thức liên hệ giữa hai nghiệm của phương trình (1) không phụ thuộc vào m
a, Với m=2 thì phương trình (1) trở thành
x mũ 2 + 2(2+2)x +4.2 -1 =0
<=> x mũ 2 + 8x +7 =0
<=> x mũ 2 + x + 7x +7 =0
<=> (x+1)(x+7) =0
<=> x= -1 hoặc x= -7
b, Ta có:
penta' = (m+2)mũ2 - 4m -1
= m m 2 +4m +4 -4m -1
= m mũ2 +3
vì m mũ2 luôn > hoặc = 0 với mọi m
suy ra m mũ2 +3 luôn >0 với mọi m
suy ra penta' >0 hay có hai nghiệm phân biệt (đpcm)
CÒN PHẦN SAU THÌ MK KO BIẾT LÀM .... THÔNG CẢM