K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2022

Bài 5:

\(x^2+y^2+1\ge xy+x+y\)

\(\Leftrightarrow2\left(x^2+y^2+1\right)\ge2\left(xy+x+y\right)\)

\(\Leftrightarrow2x^2+2y^2+2\ge2xy+2x+2y\)

\(\Leftrightarrow2x^2+2y^2+2-2xy-2x-2y\ge0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\left(đúng\right)\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=1\)

3:

a:Các tia trên hình là Ax,Ay,Bx,By,Cx,Cy

=>Có 6 tia

b: AB<AC

=>B nằm giữa A và C

=>AB+BC=AC

=>BC=4cm

c: AI=3/2=1,5cm

CI=7-1,5=5,5cm

26 tháng 12 2021

câu hỏi đâu bn ?

5 tháng 5 2022

bài đâu bn

Câu 3: 

\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m^2-3m+4\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-3m+4\right)\)

\(=4m^2-16m+4-4m^2+12m-16=-4m-12\)

Để phương trình có hai nghiệm phân biệt thì -4m-12>0

=>-4m>12

hay m<-3

Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-3m+4\end{matrix}\right.\)

Theo đề, ta có: \(x_1+x_2=x_1x_2\)

\(\Leftrightarrow m^2-3m+4-2m+2=0\)

=>(m-2)(m-3)=0

hay \(m\in\varnothing\)

20 tháng 5 2021

undefined

undefined

18 tháng 2 2022

tk:

undefined

Câu 1: A
Câu 2: B

Câu 3: D
Câu 4: A

Câu 5: C

Câu 6: B

Câu 7: A

Câu 9: B