Qua điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB,AC cảu đường tròn (B,C là hai tiếp điểm).Gọi M là trung điểm của đoạn AC , E là giao điểm thứ hai của MB với đường tròn (O).
a.Chứng minh tứ giác ABOC là tứ giác nội tiếp , Tam giác CME đồng dạng với tam giác BMC.
b.Gọi K là giao điểm thứ hai của đường thẳng AE với đường tròn (O).Chứng minh BE.CK = BK.CE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc OBA+góc OCA=90+90=180 độ
=>OBAC nội tiếp
Xét ΔCME và ΔBMC có
góc M chung
góc CEM=góc BCM
=>ΔCME đồng dạng với ΔBMC
b: Xét ΔABE và ΔAKB có
góc ABE=góc AKB
góc BAE chung
=>ΔABE đồng dạng với ΔAKB
=>BF/BK=BA/AK=AE/AB
Xét ΔACE và ΔAKC có
góc ACE=góc AKC
góc CAE chung
=>ΔACE đồng dạng với ΔAKC
=>CE/CK=AE/AC
=>CE/CK=BF/BK
=>CE*BK=CF*BK
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
a) Chứng minh tứ giác ABOC nội tiếp được đường tròn.
A B O ^ = 90 0 A C O ^ = 90 0 A B O ^ + A C O ^ = 180 0
=> tứ giác ABOC nội tiếp được đường tròn.
b) Vẽ cát tuyến ADE của (O) sao cho ADE nằm giữa 2 tia AO, AB; D, E Î (O) và D nằm giữa A, E. Chứng minh A B 2 = A D . A E .
Tam giác ADB đồng dạng với tam giác ABE
⇒ A B A E = A D A B ⇔ A B 2 = A D . A E
c) Gọi F là điểm đối xứng của D qua AO, H là giao điểm của AO và BC. Chứng minh: ba điểm E, F, H thẳng hàng.
Ta có D H A ^ = E H O ^
nên D H A ^ = E H O ^ = A H F ^ ⇒ A H E ^ + A H F ^ = 180 0 ⇒ 3 điểm E, F, H thẳng hàng.
Có 1 phần câu trả lời ở đây.
Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube