K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2022

undefined

a) Vì AB//CE (gt) 

=> BAD = CED (so le trong)

Xét tam giác ABD và tam giác ECD có 

BAD = CED (cmt)

ADB = EDC (đối đỉnh)

=> Tam giác ABD đồng dạng với tam giác ECD 

b) Đặt BD là x, ta có: 

CD = BC - BD = 15 - x

Xét tam giác ABC có AD là đường phân giác (gt) nên

=> BD/DC = AB/AC (Tính chất đường phân giác trong tam giác)

Thay số: x/15 - x = 8/12

=> 12x = 8(15 - x)

(=) 12x = 120 - 8x

(=) 20x = 120

(=) x = 6 

=> BD = 6

=> CD = BC - BD = 15 - 6 = 9 cm 

 

28 tháng 3 2022

em cảm ơn

27 tháng 3 2022

ai giúp mình lẹ nha nhanh mình tick nhé

a: Xét ΔABD và ΔECD có 

\(\widehat{ADB}=\widehat{EDC}\)

\(\widehat{ABD}=\widehat{ECD}\)

Do đó; ΔABD\(\sim\)ΔECD

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/8=DC/12

=>DB/2=DC/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{2}=\dfrac{DC}{3}=\dfrac{DB+DC}{2+3}=\dfrac{15}{5}=3\)

Do đó: DB=6cm; DC=9cm

27 tháng 3 2022

giúp mình vs

 

a: Xét ΔABD và ΔECD có 

\(\widehat{ADB}=\widehat{EDC}\)

\(\widehat{ABD}=\widehat{ECD}\)

Do đó; ΔABD\(\sim\)ΔECD

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/8=DC/12

=>DB/2=DC/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{2}=\dfrac{DC}{3}=\dfrac{DB+DC}{2+3}=\dfrac{15}{5}=3\)

Do đó: DB=6cm; DC=9cm

a: Xét ΔABD và ΔECD có 

\(\widehat{ADB}=\widehat{EDC}\)

\(\widehat{ABD}=\widehat{ECD}\)

Do đó; ΔABD\(\sim\)ΔECD

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/8=DC/12

=>DB/2=DC/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{2}=\dfrac{DC}{3}=\dfrac{DB+DC}{2+3}=\dfrac{15}{5}=3\)

Do đó: DB=6cm; DC=9cm

12 tháng 12 2021

Gọi Bx là tia đối của tia BA. Lấy E trên AC sao cho AB = AE

Xét tam giác BAD=EAD c-g-c => BD = DE và DEC = CBx 

Trong tam giác ABC, BAC + ABC + ACB = 180 => ACB = 180 - BAC - ABC => ACB < 180 - ABC

Ta có DBx + ABC = 180 (hai góc kề bù) => DBx = 180 - ABC

=>ACB < DBx => ACB < DEC => Trong tam giác DEC, DC > DE (Quan hệ giữa góc và cạnh)

Vậy BD < DC

11 tháng 8 2017

Viết thiếu rồi bạn ơi mk ko hiểu

15 tháng 8 2017

mk viết đúng đề oy mà

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>MF=ME

=>M là trung điểm của EF

=>BD=CE