so sánh : 2^225 và 3^151 ( so sánh 2 mũ 225 và 3 mũ 151)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Ta có:
2225 = ( 23 )75 = 875
3151 > 3150 = ( 32 ) 75 = 975
Vì 8 < 9 \(\Rightarrow\) 875 < 975
\(\Rightarrow\)2225 < 3150 < 3151
Vậy 2225 < 3151
b,
Vì n là số tự nhiên nên n chỉ có thể là số chẵn hoặc n là số lẻ
- Nếu n là chẵn \(\Rightarrow\)3n + 2 là chẵn
\(\Rightarrow3n+2⋮2\)
\(\Rightarrow\left(n+1\right).\left(3n+2\right)⋮2\)với n chẵn (1)
- Nếu n lẻ \(\Rightarrow\)n+1 là chẵn
\(\Rightarrow\) \(n+1⋮2\)
\(\Rightarrow\left(n+1\right).\left(3n+2\right)⋮2\)với n lẻ (2)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\Rightarrow\left(n+1\right).\left(3n+2\right)⋮2\)với mọi số tự nhiên n
Vậy \(A=\left(n+1\right).\left(3n+2\right)⋮2\)
a)
Ta có : 3151 > 3150 = ( 32 ) 75 = 975
Mà 2225 = ( 23 ) 75 = 875
Vì 975 > 875 nên 2225 < 3150 < 3151
=> 2225 < 3151
b) ta xét 2 trường hợp : n = 2k hoặc n = 2k + 1 ( k \(\in\)Z )
TH1 : n = 2k + 1
A = ( n + 1 ) ( 3n + 2 )
=> A = ( 2k + 1 +1 ) . [ 3 . ( 2k + 1 ) + 2 ]
=> A = ( 2k + 2 ) . ( 6k + 4 )
=> A = 2 ( k + 1 ) . 2 ( 3k + 2 ) \(⋮\)2
TH2 : n = 2k
A = ( n + 1 ) ( 3n + 2 )
=> A = ( 2k + 1 ) ( 3 . 2k + 2 )
=> A = ( 2k + 1 ) . ( 6k + 2 )
=> A = ( 2k + 1 ) . 2 . ( 3k + 1 ) \(⋮\)2
=> A \(⋮\)2
3150 thì mình làm được chứ 2151 thi mình không làm được
vì 3^150< 3^151
Mà 3^150 =3^(2*75)=(3^2)^75=9^75
2^225=2^(3*75)=(2^3)^75=8^75
Mà 8<9
Suy ra 8^75<9^75suy ra 2^225<3^150<3^151
Vậy 2^225<3^151
Ta có công thức (am)n=am.n
Ta có 3151 > 3150
=> 3150 = (32)75 = 975
=> 2255 = (23)75 = 875
=> 3150 > 2225 (Vì 975 > 875)
Mà 3151 > 3150 >2225
Vậy 3151 > 2225
Nhận thấy 3^151 > 3^150
Mà 3^150 = (3^2)^75 = 9^75
và 2^225 = (2^3)^75 = 8^75
=> 3^150 > 2^225 (Vì 9^75 > 8^75)
Mà 3^151 > 3^150 >2^225
Vậy 3^151 > 2^225
mình lớp 5 bạn xem đúng thì tích nha
Nhận thấy 3^151 > 3^150
Mà 3^150 = (3^2)^75 = 9^75
và 2^225 = (2^3)^75 = 8^75
=> 3^150 > 2^225 (Vì 9^75 > 8^75)
Mà 3^151 > 3^150 >2^225
Vậy 3^151 > 2^225
ai tích mình tích lại
\(2^{300}=\left(2^4\right)^{75}=16^{75}\)
\(3^{225}=\left(3^3\right)^{75}=27^{75}\)
mà 16<27
nên \(2^{300}< 3^{225}\)
2225 = (23)75 = 875
3151 > 3150 = (32)75 = 975
=> 3151 > 975 > 875
=> 3151 > 2225
4n - 5 chia hết cho 2n - 1
=> 4n - 2 - 3 chia hết cho 2n - 1
=> 2.(2n - 1) - 3 chia hết cho 2n - 1
Do 2.(2n - 1) chia hết cho 2n - 1 => 3 chia hết cho 2n - 1
Mà n thuộc N => 2n - 1 > hoặc = -1
=> 2n - 1 thuộc {-1 ; 1 ; 3}
=> 2n thuộc {0 ; 2 ; 4}
=> n thuộc {0 ; 1 ; 2}