Cho tam giác ABC, cmr 2\(\sin\frac{A}{2}.\sin\frac{B}{2}=\cos\left(\frac{A}{2}-\frac{B}{2}\right)-\cos\left(\frac{A}{2}+\frac{B}{2}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)
\(B=\frac{cosa}{sina}\left(\frac{1+sin^2a}{cosa}-cosa\right)=\frac{cosa}{sina}\left(\frac{1+sin^2a-cos^2a}{cosa}\right)=\frac{cosa}{sina}.\frac{2sin^2a}{cosa}=2sina\)
\(C=\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cos2x.cosx}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)
\(D=\frac{2sinx.cosx.\left(-tanx\right)}{-tanx.sinx}-2cosx=2cosx-2cosx=0\)
\(E=cos^2x.cot^2x-cot^2x+cos^2x+2cos^2x+2sin^2x\)
\(E=cot^2x\left(cos^2x-1\right)+cos^2x+2=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+2=2\)
\(F=\frac{sin^2x\left(1+tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{sin^2x}{cos^2x}=tan^2x\)
Câu G mẫu số có gì đó sai sai, sao lại là \(2sina-sina?\)
\(H=sin^4\left(\frac{\pi}{2}+a\right)-cos^4\left(\frac{3\pi}{2}-a\right)+1=cos^4a-sin^4a+1\)
\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1=cos^2a-\left(1-cos^2a\right)+1=2cos^2a\)
\(A=cosa\left(sinb.cosc-cosb.sinc\right)+cosb\left(sinc.cosa-cosc.sina\right)+cosc\left(sinacosb-cosasinb\right)\)
\(A=cosasinbcosc-cosacosbsinc+cosacosbsinc-sinacosbcosc+sinacosbcosc-cosasinbcosc\)
\(A=0\)
\(B=sin^2x+\frac{1}{2}\left(cos\frac{2\pi}{3}+cos2x\right)\)
\(B=\frac{1}{2}-\frac{1}{2}cos2x-\frac{1}{4}+\frac{1}{2}cos2x\)
\(B=\frac{1}{4}\)
\(C=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}+2x\right)+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}-2x\right)\)
\(C=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}\left(cos\left(\frac{4\pi}{3}+2x\right)+cos\left(\frac{4\pi}{3}-2x\right)\right)\)
\(C=\frac{3}{2}-\frac{1}{2}cos2x-cos\frac{4\pi}{3}.cos2x\)
\(C=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x\)
\(C=\frac{3}{2}\)
\(D=\frac{1}{2}\left[\sqrt{2}sin\left(\frac{\pi}{4}+x\right)\right]^2-sin^2x-sinx.\sqrt{2}cos\left(\frac{\pi}{4}+x\right)\)
\(D=\frac{1}{2}\left(sinx+cosx\right)^2-sin^2x-sinx\left(sinx-cosx\right)\)
\(D=\frac{1}{2}\left(1+2sinx.cosx\right)-sin^2x-sin^2x+sinx.cosx\)
\(D=\frac{1}{2}+sinxcosx+sinxcosx=\frac{1}{2}+sin2x\)
Góc độ cao của thang dựa vào tường là 60º và chân thang cách tường 4,6 m. Chiều dài của thang là
Mẫn Li
Câu 4 nếu bạn ko đánh sai thì người ghi đề sai :D, tử số phải là sinb chứ ko phải sina (đã chứng minh bên trên)
Câu 2b sửa lại thì cm dễ thôi:
\(\frac{cos\left(a+b\right).cos\left(a-b\right)}{sin^2a.sin^2b}=\frac{\frac{1}{2}cos2a+\frac{1}{2}cos2b}{sin^2a.sin^2b}=\frac{1-sin^2a-sin^2b}{sin^2a.sin^2b}=\frac{1}{sin^2a.sin^2b}-\frac{1}{sin^2a}-\frac{1}{sin^2b}\)
\(=\left(1+cot^2a\right)\left(1+cot^2b\right)-\left(1+cot^2a\right)-\left(1+cot^2b\right)\)
\(=1+cot^2a+cot^2b+cot^2a.cot^2b-2-cot^2a-cot^2b\)
\(=cot^2a.cot^2b-1\)
(từ đầu bằng thứ nhất ra thứ 2 sử dụng ct nhân đôi \(cos2x=1-2sin^2x\))
Rất xin lỗi bạn!
Câu 2b do mình đánh sai dấu phải là \(\frac{cos\left(a+b\right)\times cos\left(a-b\right)}{sin^2a\times sin^2b}=cot^2a\times cot^2b-1\)
Câu 3 mình cũng đánh sai luôn:
\(sin\frac{A}{2}=cos\frac{B}{2}\times cos\frac{C}{2}-sin\frac{C}{2}\times sin\frac{B}{2}\)
Còn câu 4 thì mình ko có đánh sai! Thành thật xin lỗi bạn! Mình sẽ khắc phục sự cố này!
\(cosa.sina=\frac{1}{5}\Rightarrow\frac{cosa.sina}{sin^2a}=\frac{1}{5sin^2a}=\frac{sin^2a+cos^2a}{5sin^2a}\)
\(\Rightarrow\frac{cosa}{sina}=\frac{1}{5}+\frac{1}{5}.\frac{cos^2a}{sin^2a}\)
\(\Rightarrow cota=\frac{1}{5}+\frac{1}{5}cot^2a\)
\(\Rightarrow cot^2a-5cota+1=0\)
\(\Rightarrow cota=\frac{5\pm\sqrt{21}}{2}\)
Câu 2:
\(\frac{cosa}{1-sina}=\frac{cosa\left(1+sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{cosa\left(1+sina\right)}{1-sin^2a}=\frac{cosa\left(1+sina\right)}{cos^2a}=\frac{1+sina}{cosa}\)
b/
\(\frac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}\)
\(=\frac{sin^2a+cos^2a+2sina.cosa-\left(sin^2a+cos^2a-2sina.cosa\right)}{sina.cosa}\)
\(=\frac{4sina.cosa}{sina.cosa}\)
\(=4\)
Tự chứng minh từng cái này rồi suy ra cái đó nhé b.
Ta có: \(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}-sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}\)
Tương tự ta suy ra:
\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}sin\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+3sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\left(1\right)\)
Tiếp theo chứng minh:
\(2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=\frac{cosA+cosB+cosC-1}{2}\left(2\right)\)
\(sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}=\frac{3}{2}-\frac{cosA+cosB+cosC}{2}\left(3\right)\)
\(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\left(4\right)\)
Từ (1), (2), (3), (4) suy được điều phải chứng minh
a/ \(\frac{A}{2}+\left(\frac{B}{2}+\frac{C}{2}\right)=90^0\)
\(\Rightarrow sin\frac{A}{2}=cos\left(\frac{B}{2}+\frac{C}{2}\right)=cos\frac{B}{2}cos\frac{C}{2}-sin\frac{B}{2}.sin\frac{C}{2}\)
b/ \(\frac{tan^2A-tan^2B}{1-tan^2A.tan^2B}=\frac{\left(tanA-tanB\right)}{\left(1+tanA.tanB\right)}.\frac{\left(tanA+tanB\right)}{\left(1-tanA.tanB\right)}=tan\left(A-B\right).tan\left(A+B\right)\)
\(=tan\left(A-B\right).tan\left(180^0-C\right)=-tan\left(A-B\right).tanC\)
c/
\(A+B+C=180^0\Rightarrow cot\left(A+B\right)=-cotC\)
\(\Leftrightarrow\frac{cotA.cotB-1}{cotA+cotB}=-cotC\)
\(\Leftrightarrow cotA.cotB-1=-cotA.cotC-cotB.cotC\)
\(\Leftrightarrow cotA.cotB+cotB.cotC+cotA.cotC=1\)
a/ \(cosx-cos2x+sin2x-sinx=3-4cosx\)
\(\Leftrightarrow2sinx.cosx-sinx-2cos^2x+5cosx-2=0\)
\(\Leftrightarrow sinx\left(2cosx-1\right)-\left(2cosx-1\right)\left(cosx-2\right)=0\)
\(\Leftrightarrow\left(2cosx-1\right)\left(sinx-cosx+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2cosx-1=0\\sinx-cosx=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\sin\left(x-\frac{\pi}{4}\right)=-\sqrt{2}< -1\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=\pm\frac{\pi}{3}+k2\pi\)
b/ ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\sin\left(x+\frac{\pi}{3}\right)\ne0\end{matrix}\right.\) \(\Rightarrow...\)
\(\frac{2cos^2x+\sqrt{3}sin2x+3}{2cos^2x.sin\left(x+\frac{\pi}{3}\right)}=\frac{3}{cos^2x}\)
\(\Leftrightarrow2cos^2x+2\sqrt{3}sinx.cosx+3=3\left(sinx+\sqrt{3}cosx\right)\)
\(\Leftrightarrow2cos^2x-3\sqrt{3}cosx+3+2\sqrt{3}sinx.cosx-3sinx=0\)
\(\Leftrightarrow\left(2cosx-\sqrt{3}\right)\left(cosx-\sqrt{3}\right)+\sqrt{3}sinx\left(2cosx-\sqrt{3}\right)=0\)
\(\Leftrightarrow\left(2cosx-\sqrt{3}\right)\left(cosx+\sqrt{3}sinx-\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{\sqrt{3}}{2}\\sin\left(x+\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}\end{matrix}\right.\) \(\Rightarrow...\)