Cho tam giác AME có AM = AE, tia phân giác của góc A cắt ME tại I
a) Chứng minh rằng tam giác AIM = tam giác AIE
b) Vẽ IH vuông góc với AM (H thuộc AM), IK vuông góc với AE (K thuộc AE). Chứng minh IH = IK
c) Chứng minh rằng HK // ME
d) Gọi giao điểm của KI và AM là B, giao điểm của HI và AE là C, N là trung điểm của đoạn thẳng BC. Chứng minh rằng A, I, N thẳng hàng
a, Xét tam giác AIM và tam giác AIE có
^IAM = ^IAE ; AI _ chung ; AM = AE
Vậy tam giác AIM = tam giác AIE (c.g.c)
b, Xét tam giác AHI và tam giác AKI có
^HAI = ^KAI ; AI _ chung
Vậy tam giác AHI = tam giác AKI (ch-gn)
=> HI = KI ( 2 cạnh tương ứng )
=> AH = AK ( 2 cạnh tương ứng )
c, Ta có AH/AM = AK/AE => HK // ME ( Ta lét đảo )