K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

a, dk \(x\ge0.x\ne1\)

\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)

 =\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)

phan b,c ban tu lam not nhe dai lam mk ko lam dau  mk co vc ban rui

29 tháng 7 2017

Thưa....bạn.....mình....chịu.....

16 tháng 8 2017

Ê bạn... thiên vị ak.

Sao ko đợi người nào giỏi trả lời

10 tháng 8 2017

Ta có :

 Đặt A=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\left(\frac{x+y}{xy}\right).\frac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}+\frac{2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)^3}\right)\)

=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\frac{x+y}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}+\frac{2\sqrt{xy}}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)

=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)

=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\frac{1}{xy}\)

=\(\frac{xy.\left(\sqrt{x}-\sqrt{y}\right)}{xy\sqrt{xy}}\)

=\(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\)

=\(\frac{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)

=\(\frac{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}{\sqrt{4-3}}\)

=\(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

=> \(A^2=\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)^2\)

           =\(2-\sqrt{3}-2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+2+\sqrt{3}\)

           =\(4-2\sqrt{4-3}\)

           =\(4-2\)

           =\(2\)

=>\(A=\sqrt{2}\)

NV
18 tháng 6 2019

ĐKXĐ:

\(P=\left[\frac{\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}.\frac{2}{\left(\sqrt{x}+\sqrt{y}\right)}+\frac{x+y}{xy}\right]:\left[\frac{\sqrt{x}\left(x+y\right)+\sqrt{y}\left(x+y\right)}{\sqrt{xy}\left(x+y\right)}\right]\)

\(=\left(\frac{2\sqrt{xy}+x+y}{xy}\right):\left[\frac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(x+y\right)}\right]=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}.\frac{\sqrt{xy}}{\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)

\(xy=16\Rightarrow\left\{{}\begin{matrix}\sqrt{xy}=4\\y=\frac{16}{x}\end{matrix}\right.\)

\(\Rightarrow P=\frac{\sqrt{x}+\frac{4}{\sqrt{x}}}{4}\ge\frac{1}{4}\left(2\sqrt{\sqrt{x}.\frac{4}{\sqrt{x}}}\right)=1\)

\(\Rightarrow P_{min}=1\) khi \(x=y=4\)