K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

a) OA+OB >AB ( bất đẳng thức tam giác)

    OD+OC >DC ( bất đẳng thức tam giác )

b) từ 2 đều ở câu a => AC +BD > AB +CD

4 tháng 8 2016

cảm ơn bạn!

a: Xét ΔAOB và ΔCOD có

\(\widehat{OAB}=\widehat{OCD}\)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔAOB\(\sim\)ΔCOD

Suy ra: OA/OC=OB/OD

hay \(OA\cdot OD=OB\cdot OC\)

b: Xét ΔADC có MO//DC

nên MO/DC=AM/AD(1)

Xét ΔBDC có ON//DC

nên ON/DC=BN/BC(2)

Xét hình thang ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)

Từ (1), (2) và (3) suy ra OM=ON

hay O là trung điểm của MN

27 tháng 9 2019

A B C D O

Theo bất đẳng thức tam giác ta có:

\(OA+OB>AB\)

\(OB+OC>BC\)

\(OC+OD>DC\)

\(OD+OA>AD\)

Cộng vế theo vế thì \(2\left(OA+OB+OC+OD\right)>AB+BC+CA+AD\)

\(\Rightarrow OA+OB+OC+OD>\frac{AB+BC+CA+AD}{2}\) ( 1 )

Theo bất đẳng thức tam giác ta có:

\(AB+BC>CA;BC+CD>BD;CD+DA>CA;DA+AB>BD\)

Cộng vế theo vế ta có:

\(2\left(AB+BC+CD+AD\right)>2\left(CA+BD\right)=2\left(AO+OC+OD+OB\right)\)

\(\Leftrightarrow AB+BC+CD+DA>OA+OB+OC+OD\) ( 2 )

Từ ( 1 ) ; ( 2 ) suy ra đpcm.

11 tháng 12 2021

a: Xét ΔABC có

E là trung điểm của AB

F là trung điểm của BC

Do đó: EF là đường trung bình của ΔABC

Suy ra: FE//AC và FE=AC/2(1)

Xét ΔCDA có

G là trung điểm của CD

H là trung điểm của DA

Do đó: GH là đường trung bình của ΔCDA
Suy ra: GH//CA và GH=CA/2(2)

TỪ (1) và (2) suy ra EF//GH và EF=GH

hay EFGH là hinh bình hành

19 tháng 7 2016

A B C D O

Gọi O là giao điểm hai đường chéo AC và BD

  • Xét lần lượt các tam giác OAB , OBC , OCD , OAD và áp dụng bất đẳng thức tam giác được : 

\(OA+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OA+OD>AD\)

Cộng các bất đẳng thức trên theo vế được : \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+AD\)

\(\Rightarrow2\left(AC+BD\right)>AB+BC+CD+AD\) \(\Rightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\) (1)

  • Tương tự, lần lượt xét các tam giác ACD , BCD , BAC , ABD và áp dụng bất đẳng thức tam giác được : 

\(AD+CD>AC\) ; \(BC+CD>BD\) ; \(AB+BC>AC\) ; \(AB+AD>BD\)

Cộng các bất đẳng thức trên theo vế được : \(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)

\(\Rightarrow AC+BD< AB+BC+CD+DA\)(2)

Từ (1) và (2) ta có : \(\frac{AB+BC+CD+DA}{2}< AC+BD< AB+BC+CD+AD\)

hay \(\frac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+AD\)

19 tháng 7 2016

ve hin hra roi nghi cach cm 

25 tháng 6 2021

a, do ABCD là hình chữ nhật nên 2 đường chéo AC và BD sẽ cắt nhau tại trung điểm O mỗi đườn

\(=>OA=OB=OC=OD\)

=>A,B,C,D cách đều O nên A,B,C,D nằm trên (O) đường kính AC

b,do M,N,P,Q là trung điểm OA,OB,OC,OD

mà \(OA=OB=OC=OD\left(cmt\right)\)

\(=>OM=ON=OQ=OP\)

4 điểm M,N,P,Q nằm trên (O) đường kính MP