K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

3x2xn + 2mxyym - 3 = 3x2 + n + 2m + 1.y1 + m - 3 = 3x3 + 2m + n.ym - 2

12(xy)8x7y4 - m = 12x8y8x7y4 - m = 12x8 + 7y8 + 4 - m = 12x15y12 - m

2 đơn thức thu gọn trên đồng dạng với nhau

=> ym - 2 = y12 - m => m - 2 = 12 - m => m = 14 - m => 14 = 2m => m = 7

mà x3 + 2m + n = x15

=> 3 + 2m + n = 15 => n = 15 - 3 - 2m = 12 - 2.7 = 12 - 14 = -2 

\(3x^2\cdot x^{n+2m}\cdot x\cdot y\cdot y^{m-3}\)

\(=3x^{2+n+2m+1}\cdot y^{1+m-3}=3x^{2m+n+3}y^{m-2}\)

\(12\left(xy\right)^8x^7\cdot y^{4-m}=12x^8y^8\cdot x^7y^{4-m}=12x^{15}y^{12-m}\)

Để hai đơn thức đồng dạng thì \(\left\{{}\begin{matrix}m-2=12-m\\2m+n+3=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=7\\n+14=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=7\\n=-2\end{matrix}\right.\)

29 tháng 11 2018

Đáp án đúng là (A) 3x2 y3 và 3x3 y2 là hai đơn thức đồng dạng.

25 tháng 9 2016

1. Đặt \(t=x^2,t\ge0\)

\(3x^4+4x^2-2\ge3.0+4.0-2=-2\)

=> MIN = -2 khi x = 0

2. \(\left(x^2+2\right)\left(x+1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+2=0\\x+1=0\end{array}\right.\)

Vì \(x^2+2\ge2>0\) => Vô nghiệm

Vậy x+1 = 0 => x = -1

3. Kết quả là 10

4. Ko rõ đề

28 tháng 1 2022

bạn có thể gõ latex đc ko

Cái biểu tượng nằm ở ngay góc trên cùng bên trái khung câu hỏi 

28 tháng 1 2022

Ta có : 

\(p=n-m=x^2y^2.xy^2z^2=x^3y^4z^2-3\left(x^2y^4z^2\right)=x^3y^4z^2-3x^2y^4z^2\)

Thay x = z = -2 ; y = -1 ta được : 

\(=-8.1.4-3.4.1.4=-32-48=-80\)

AH
Akai Haruma
Giáo viên
19 tháng 4 2021

Lời giải:

Vì $m,n$ nguyên tố cùng nhau, $m+n=90$ chẵn nên $m,n$ là hai số lẻ phân biệt.

Không mất tổng quát giả sử $m>n$.

$90=m+n>2n\Rightarrow n< 45$. Vì $n$ lẻ nên $n\leq 43$.

Có:

$mn=(90-n)n=90n-n^2=n(43-n)-47(43-n)+43.47$

$=(n-47)(43-n)+2021$

Vì $n\leq 43$ nên $n-47< 0; 43-n\geq 0\Rightarrow (n-47)(43-n)\leq 0$

$\Rightarrow mn\leq 2021$. Giá trị này đạt tại $n=43, m=47$ thỏa mãn điều kiện đề.

Vậy GTLN của $mn$ là $2021$.

17 tháng 3 2016

3n+4/n-1 thuộc Z

3n-3+7/n-1 thuộc Z

3n-3/n-1 + 7/n-1 thuộc Z

3+7/n-1 thuộc Z

7/n-1 thuộc Z

n-1 thuộc ước của 7

n-1= -7;-1;1;7

n=-6;0;2;8

1 tháng 3 2017

n=-6;0;2;8 ủng hộ nha

NV
22 tháng 12 2020

\(x^2+y^2=1+xy\Rightarrow x^2+y^2-xy=1\)

Ta có: \(1+xy=x^2+y^2\ge2xy\Rightarrow xy\le1\)

\(1+xy=x^2+y^2\ge-2xy\Rightarrow xy\ge-\dfrac{1}{3}\)

\(P=\left(x^2+y^2\right)^2-x^2y^2-2x^2y^2=\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)-2x^2y^2\)

\(=x^2+y^2+xy-2x^2y^2=-2x^2y^2+2xy+1\)

Đặt \(a=xy\Rightarrow P=f\left(a\right)=-2a^2+2a+1\)

Xét hàm \(f\left(a\right)=-2a^2+2a+1\) trên \(\left[-\dfrac{1}{3};1\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[-\dfrac{1}{3};1\right]\)

\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)

\(\Rightarrow M=\dfrac{3}{2}\) ; \(m=\dfrac{1}{9}\) \(\Rightarrow Mm=\dfrac{1}{6}\)