Cho x-y+1=0. Tính giá trị của biểu thức
M= x2(x-y) + y2(y-x)+x2-y2+100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
D = x 2 ( x + y ) − y 2 ( x + y ) + x 2 − y 2 + 2 ( x + y ) + 3 = ( x + y ) x 2 − y 2 + x 2 − y 2 + 2 ( x + y ) + 2 + 1 = x 2 − y 2 ( x + y + 1 ) + 2 ( x + y + 1 ) + 1 = x 2 − y 2 ⋅ 0 + 2 ⋅ 0 + 1 = 1 tai x + y + 1 = 0
Vậy D = 1 khi x + y + 1 = 0
Chọn đáp án D
Bài 1:
$2xy=(x+y)^2-(x^2+y^2)=4^2-10=6\Rightarrow xy=3$
$M=x^6+y^6=(x^3+y^3)^2-2x^3y^3$
$=[(x+y)^3-3xy(x+y)]^2-2(xy)^3=(4^3-3.3.4)^2-2.3^3=730$
Bài 2:
$8x^3-32y-32x^2y+8x=0$
$\Leftrightarrow (8x^3+8x)-(32y+32x^2y)=0$
$\Leftrightarrow 8x(x^2+1)-32y(1+x^2)=0$
$\Leftrightarrow (8x-32y)(x^2+1)=0$
$\Rightarrow 8x-32y=0$ (do $x^2+1>0$ với mọi $x$)
$\Leftrightarrow x=4y$
Khi đó:
$M=\frac{3.4y+2y}{3.4y-2y}=\frac{14y}{10y}=\frac{14}{10}=\frac{7}{5}$
Ta có:
A = (x – y).(x2 + xy + y2)
= x.(x2 + xy + y2) + (–y).(x2 + xy + y2)
= x.x2 + x.xy + x.y2 + (–y).x2 + (–y).xy + (–y).y2
= x3 + x2y + xy2 – x2y – xy2 – y3
= x3 – y3 + (x2y – x2y) + (xy2 – xy2)
= x3 – y3.
Tại x = –10, y = 2 thì A = (–10)3 – 23 = –1000 – 8 = –1008
Tại x = –1 ; y = 0 thì A = (–1)3 – 03 = –1 – 0 = –1
Tại x = 2 ; y = –1 thì A = 23 – (–1)3 = 8 – (–1) = 9
Tại x = –0,5 ; y = 1,25 thì A = (–0,5)3 – 1,253 = –0,125 – 1,953125 = –2,078125
Vậy ta có bảng sau :
Giá trị của x và y | Giá trị biểu thức (x – y)(x2 + xy + y2) |
x = -10 ; y = 2 | -1008 |
x = -1 ; y = 0 | -1 |
x = 2 ; y = -1 | 9 |
x = -0,5 ; y = 1,25 | -2,078125 |
\(M=x^2\left(x-y\right)-y^2\left(x-y\right)+x^2-y^2+100\)
\(=\left(x-y\right)\left(x^2-y^2\right)+x^2-y^2+100\)
\(=\left(x^2-y^2\right)\left(x-y+1\right)+100\)
\(=\left(x^2-y^2\right).0+100\)
\(=100\)
Vậy \(M=100\)