Tìm giá trị lớn nhất:P=\(\dfrac{2012}{x^2+y^2+20\left(x+y\right)+2213}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
AD
1
1 tháng 3 2019
Để \(P=\dfrac{2012}{x^2+y^2-20\left(x+y\right)+2213}\) đạt giá trị lớn nhất
\(\Rightarrow x^2+y^2-20\left(x+y\right)+2213\) đạt giá trị nhỏ nhất
\(=x^2-20x+y^2-20x+2213\)
\(=x^2-20x+100+y^2-20y+100+2013\)
\(=\left(x-10\right)^2+\left(y-10\right)^2+2013\ge2013\)
Vậy \(P_{max}=\dfrac{2012}{2013}\) tại \(\left\{{}\begin{matrix}x=10\\y=10\end{matrix}\right.\)
H
1
NV
Nguyễn Việt Lâm
Giáo viên
21 tháng 2 2021
\(\dfrac{1}{y}=\dfrac{x^2+2x+1}{x}=x+\dfrac{1}{x}+2\ge2\sqrt{x.\dfrac{1}{x}}+2=4\)
\(\Rightarrow y\le\dfrac{1}{4}\)
\(y_{max}=4\) khi \(x=1\)
\(P=\dfrac{2012}{\left(x^2+20x+100\right)+\left(y^2+20y+100\right)+2013}\)
\(P=\dfrac{2012}{\left(x+10\right)^2+\left(y+10\right)^2+2013}\le\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=y=-10\)