Cho năm chữ số 0, 1, 2, 3, 4. Hỏi có thể lập được bao nhiêu số có bốn chữ số khác nhau và chia hết cho 5?
Giải hộ mk nha , mk ko giỏi về dạng này :(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Số chia hết cho 5 thì có tận cùng bằng 0 hoặc bằng 5.
*.Tận cùng bằng 0:
-Có 1 cách chọn chữ số hàng đơn vị (là 0)
-Có 9 cách chọn chữ số hàng trăm.
-Có 8 cách chọn chữ số ngành chục.
Vậy có: 1 x 9 x 8 = 72 (số)
*.Tận cùng bằng 5:
-Có 1 cách chọn chữ số hàng đơn vị (là 5).
-Có tám cách chọn chữ số hàng trăm (khác 0 và 5)
-Có 8 cách chọn chữ số hàng chục.
Vậy có: 1 x 8 x 8 = 64 (số)
Có tất cả: 72 + 64 = 136 (số)
Chữ số hàng nghìn có 4 cách chọn
Chữ số hàng trăm có 3 cách chọn
Chữ số hàng chục có 2 cách chọn
Chữ số hàng đơn vị có 1 cách chọn
Vậy có thể lập dc là :
4 x 3 x 2 x 1 =24 (số)
Đáp số : 24 số
ta có chắc chắn số đó sẽ chia hết cho 9,3 vì tổng của 4 chữ số đã cho có tổng bằng 9
mà số đó chia hết cho 2,5 suy ra tận cùng của nó là 0
Vậy hàng nghìn sẽ có 3 cách chọn
Hàng trăm có sẽ có 2 cách chọn
Hàng chục có 1 cách chọn
Hàng đơn vị có 1 cách chọn
Vậy có thể lập được số số có 4 chữ số chia hết cho 3,9,2,5 là
2.3.1.1=6(số)
Cho phân số c/dneeus rút gọn phân sốc/dthif được phân số 5/6. Nếu giảm tử số đi 10 đơn vị rồi rút gọn thì được phân số 25/36. Tìm phân số c/d
b, Số có 4 chữ số có dạng \(\overline{abcd}\).
a có 7 cách chọn.
b có 7 cách chọn.
c có 6 cách chọn.
d có 5 cách chọn.
\(\Rightarrow\) có \(7.7.6.5=1470\) số thỏa mãn.
Bài 1:
a) \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
b) \(2+4+6+...+2n=\frac{\left[\left(2n-2\right):2+1\right]\left(2n+2\right)}{2}=\left(n-1+1\right)\left(n+1\right)=n\left(n+1\right)\)
Các phần khác tương tự
Bài 2:( t làm theo cách hiểu )
Gọi 4 chứ số đó là a,b,c,d \(\left(a\ne b\ne c\ne d;a,b,c,d\ne0\right)\)
a) Chứng tỏ có thể lập 4 số khác nhau t chịu hiểu nhưng ko biết ghi gì
b) Từ chữ số a hợp vs 3 chữ số còn lại ta được 6 số
Tương tự các số b,c,d hợp vs 3 chữ số còn lại được 6 số
Như vậy ta có thể lập được \(6.4=24\)( số )
1230; 1235; 1250; 1205; 1235; 1320; 1325; 1350; 1305;1025;1035;1520;1530
2. Dãy số có 4 chữ số chia hết cho 3 là: 1002;1005;1008;.....;9999
Số các số có 4 chữ số chia hết cho 3 là: (9999 - 1002) : 3 + 1 = 3000 số
Giải (1)
Có thể lập được các số có 5, 4, 3, 2 chữ số.
Xét về 5 chữ số: a b c d e:
a có 4 lựa chọn (lc)
b có 4 lc
c có 3 lc
d có 2 lc
e có 1 lc
Vậy có tất cả các số khác nhau có 5 chữ số: 4 × 4 × 3 × 2 × 1 = 96 (số)
Xét về 4 chữ số: a b c d
a có 4 lc
b có 4 lc
c có 3 lc
d có 2 lc
Vậy... : 4 × 4 × 3 × 2 = 96 (số)
Tự làm ...
Xét về 3 chữ số có 48 (số) Xét về 2 chữ số có 16 (số)
Vậy ... 96 + 96 + 48 + 16 = 256 (số)
Đ/s:..
Giải (2)
Cách 1:
Số đầu tiên có 4 chữ số chia hết cho 3 là: 1002
Số cuối cùng có 4 chữ số chia hết cho 3 là: 9999
Vì khoảng cách giữa 2 số là 3 đơn vị và ta có công thức:
(Số cuối - số đầu) ÷ khoảng cách + 1
=> (9999 - 1002) ÷ 3 + 1 = 3000 (số)
Đ/s:
4.3.2.1=24 mình làm theo cách chọn nhé!
Có : 4 cách chọn hàng nghìn , 4 cách chọn hàng trăm , 3 cách chọn hàng chục và 1 cách chọn hàng đơn vị .
Vậy có thể lập được số số có 4 chữ số khác nhau và chia hét cho 5 là :
4 x 4 x 3 x 1 = 48 ( số )
Đáp số : 48 số