cho 2 so tu nhien a va b . khi chia a va b cho cung so 2 thi cung co so du la 1. chung minh rang:(a-b) chia het cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Goi y
B1 X+3 chia het cho 5 7 9
B2 a ; Nhan x-1 vs 2 Roi tru cho nhau
b ; nhan x+1 vs 3
B3 nhan 3n +4 vs 4 ; 4n +5 vs3 roi tru
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
Đáp số: n=28.
1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.
2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )
3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13
Được cập nhật Bùi Văn Vương
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
Giải:
Ta có : a+5b chia hết cho 7
=> 10(a+5b) chia hết cho 7
=>10a+50b chia hết cho 7
=>10a+b+49b chia hết cho 7
=>(10a+b+49b)-49b chia hết cho 7(vì số chia hết cho 7-một số chia hết cho 7=1 số chia hết cho 7)
=>10a+b chia hết cho 7
Ta có: a+5b chia hết cho 7
suy ra 10x (a+5b)chia hết cho 7
suy ra 10a + 50b chia hết cho 7
suy ra 10a + 49b+b chia hết cho 7
suy ra 10a +49b+b - 49b chia hết cho 7
suy ra 10a +b chia hết cho 7
2 so tu nhien a va b chia cho m co chung 1 so du ,a> b hoac bang b .chung to rang a=b chia het cho m
3, Gọi ƯCLN(a,b) = d => a=a'.d hay a= 5.a'
b=b'.d b=5.b'
(a',b')=1 ( a'>b') (a',b') =1 9a'>b')
Mà a.b = ƯCLn(a,b) . BCNN(a,b)
a'.5.b'.5= 5.105
a'.5.b'.5= 5.21.5
=> a'.b'.25= 525
=> a'.b' = 525:25
=> a'.b'=21
Ta có bảng :
d | 5 | 5 |
a' | 7 | 21 |
b' | 3 | 1 |
a | 35 | 105 |
b | 15 | 5 |
Vậy ta có các cặp (a,b) : (35;150 và (105;5)
ọi k là một số nguyên, theo đề ta có:
a=3k+1
b=3k+2
ab=(3k+1)(3k+2)=9k^2+9k+2
vì 9k^2 và 9k chia hết cho 3
nên ab chia 3 dư 2
- Vì a chia cho 3 dư 1 nên a = 3m + 1 ( m \(\in\)N )
- Vì b chia cho 3 dư 2 nên b = 3n + 2 ( n\(\in\)N )
Ta có :
a . b = ( 3m + 1 ) ( 3n + 2 )
= 3m . 3n + 3m . 2 + 1 . 3n + 1 . 2
= ( 9 mn + 6m + 3n ) + 2
= 3 ( 3mn + 2m + n ) + 2 ....
Vậy ab chia cho 3 dư 2 .