Cho M=\(\frac{x^2+4}{x+5}\).Có bao nhiêu số tự nhiên x thỏa mãn 1 \(\le\) x \(\le\) 2004 sao cho M là phân số chưa tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d=ƯC\left(n^2+4;n+5\right)\)
\(\Rightarrow n\left(n+5\right)-\left(n^2+4\right)⋮d\)
\(\Rightarrow5n-4⋮d\)
\(\Rightarrow5\left(n+5\right)-29⋮d\)
\(\Rightarrow29⋮d\)
\(\Rightarrow d=\left\{1;29\right\}\)
Phân số chưa tối giản \(\Leftrightarrow d\ne1\Rightarrow d=29\)
\(\Rightarrow n+5=29k\Rightarrow n=29k-5\)
\(1\le29k-5\le2020\Rightarrow\dfrac{6}{29}\le k\le\dfrac{2025}{29}\)
\(\Leftrightarrow1\le k\le69\Rightarrow\) có 69 số tự nhiên thỏa mãn
Gọi ƯCLN( n^2 + 4 ; n^2 + 5 ) = d ( d là số tự nhiên )
Suy ra : \(n^2+4⋮d\)
\(n^2+5⋮d\)
Nên \(\left(n^2+5\right)-\left(n^2+4\right)=1\)
\(\Rightarrow1⋮d\)\(\Leftrightarrow d=\left\{1;-1\right\}\)
Vậy phân số trên luôn là phân số tối giản nên không có n thỏa mãn A không tối giản
\(x-1=\left(x-1\right)^5\)
\(\left(x-1\right)-\left(x-1\right)^5=0\)
\(\left(x-1\right)\left[1-\left(x-1\right)^4\right]=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\1-\left(x-1\right)^4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^4=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x-1=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
b) \(\frac{2}{x-1}+\frac{y-1}{3}=\frac{1}{6}\)