Cho f(x) = ax2 + bx + c (a khác 0) có delta = b2-4ac <0 khi đó mệnh đề nào đúng , vì sao ?
1. f(x) > 0 , với mọi x thuộc R
2. f(x)<0 , với mọi x thuộc R
3. f(x) không đổi dấu
4. Tồn tại x để f(x) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Ta có: nếu Δ < 0 thì f(x) luôn cùng dấu với hệ số a với mọi giá trị của x, tức là af(x) > 0, ∀x ∈ R
Vì PTVN nên Δ<0
=>f(x)=ax^2+bx+c luôn cùng dấu với a
=>f(x)>0 với mọi x
Hình a) có Δ > 0 ⇒ f(x) cùng dấu với a khi x nằm ngoài khoảng hai nghiệm của phương trình f(x) = 0; f(x) trái dấu với a khi x nằm trong khoảng hai nghiệm của phương trình f(x) = 0.
Hình b) có Δ = 0 ⇒ f(x) cùng dấu với a, trừ khi x = - b/2a.
Hình c) có Δ < 0 ⇒ f(x) cùng dấu với a.
Xét phương trình bậc hai một ẩn
ax2 + bx + c = 0 (a ≠ 0) và biệt thức ∆ = b2 – 4ac
TH1: Nếu < 0 thì phương trình vô nghiệm
TH2. Nếu = 0 thì phương trình
có nghiệm kép x1 = x2 = − b 2 a
TH3: Nếu > 0 thì phương trình
có hai nghiệm phân biệt x1, 2 = − b ± Δ 2 a
Đáp án cần chọn là: C
3 là mệnh đề đúng, do khi \(\Delta< 0\) thì \(a.f\left(x\right)>0\) ; \(\forall a\ne0\)