cho tam giác ABC vuông ở A , tia phân giác của góc ABC cắt AC tại I , kẻ IE vuông góc với BC tại E . gọi k là giao điểm của AB và IE a) Chứng minh AI=IE b) Chứng minh Tam giác ABC = Tam giác EBK .và BI vuông góc với KC c) vẽ AH vuông góc với BC tại H . chứng minh AH+BC>AB+AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔIFC vuông tại F và ΔIEC vuông tại E có
CI chung
\(\widehat{FCI}=\widehat{ECI}\)
Do đó: ΔIFC=ΔIEC
Suy ra: IF=IE
Xét ΔBDI vuông tại D và ΔBFI vuông tại F có
BI chung
\(\widehat{DBI}=\widehat{FBI}\)
Do đó: ΔBDI=ΔBFI
Suy ra: ID=IF
b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
ID=IE
Do đó: ΔADI=ΔAEI
Suy ra: \(\widehat{DAI}=\widehat{EAI}\)
hay AI là tia phân giác của góc A
Xét ΔBDI vuông tại D và ΔBEI vuông tại E có
BI chung
góc DBI=góc EBI
Do đó: ΔBDI=ΔBEI
=>ID=IE
Xét ΔAEI vuông tại E và ΔAFI vuông tại F có
AI chung
góc EAI=góc FAI
Do đó: ΔAEI=ΔAFI
=>IE=IF=ID
â: Xét ΔBAI vuông tại A và ΔBEI vuông tại E có
BI chung
góc ABI=góc EBI
=>ΔBAI=ΔBEI
=>IA=IE
mà IE<IC
nên IA<IC
b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
góc B chung
=>ΔBEF=ΔBAC
=>BF=BC
mà BI là phân giác
nên BI vuông góc CF
cau a phai la tamgiac HBA = tamgiac AMD phai k
phai thi tu ve hinh :
a, DM | IH (GT) va AH | BH (GT) ma 2 duong thang DM; BH phan biet
=> DM // BH (dl)
=> goc MDB + DBH = 180o (tcp)
co tamgiac ADB vuong can tai A do goc A = 90o (gt) va AD = AB (gt)
=> goc MDA + goc ABH = 90o
ma goc MDA + goc DAM = 90o (tc) do tamgiac DMA vuong tai M do DM | IA (gt)
=> goc MAD = goc ABH
xet tamgiac AMD va tamgiac BHA co : goc DMA = goc ANB = 90o va AD = AB (GT)
=> tamgiac AMD = tamgiac BHA (ch - gn)
bạn tự vẽ hình nha
trên tia đối cũa tia ad ,,vẽ tia at,trên tia at vẽ điểm n sao cho an =ak
bad =cad =120 độ chia 2 = 60 độ
suy ra góc bad =cad= nai = 6o độ (2 góc đối đỉnh)
góc bac +cai =180 độ mà bac =120 độ nên cai = 60 độ
nên góc nai bằng kai
cmd tam giac nai =kai (c.g.c) nên góc ani=aki = 90 độ và in=ik (2ctu)
cmd tam giac dni=dei (ch.gn)suy ra in =ie
từ 2 điều trên suy ra ik =ie
a: Xét ΔIAB và ΔIDC có
IA=ID
AB=DC
IB=IC
=>ΔIAB=ΔIDC
=>góc IAB=góc IDC=góc IAD
=>AI là phân giác của góc BAC
b: Xét ΔAEI vuông tại E và ΔAHI vuông tại H có
AI chung
góc EAI=góc HAI
=>ΔAEI=ΔAHI
=>AE=AH; IE=IH
=>AI là trung trực của EH
a) Xét \(\Delta BID\)và \(\Delta BIE\)có:
\(\widehat{IDB}=\widehat{IEC}=90^o\)
BI là cạnh chung
\(\widehat{DBI}=\widehat{EBI}\)(BI là tia p/g của \(\widehat{B}\))
\(\Rightarrow\Delta BID=\Delta BIE\left(CH-GN\right)\)
=> ID = IE (2 cạnh tương ứng) (1)
Xét \(\Delta CIE\)và \(\Delta CIF\)có:
\(\widehat{IEC}=\widehat{IFC}=90^o\)
CI là cạnh chung
\(\widehat{ECI}=\widehat{FCI}\)(CI là tia p/g của \(\widehat{C}\))
\(\Rightarrow\Delta CIE=\Delta CIF\left(CH-GN\right)\)
=> IE = IF (2 cạnh tương ứng) (2)
Từ (1) và (2) => ID = IE = IF
b)
a) Xét ΔABI vuông tại A và ΔEBI vuông tại E có
BI chung
\(\widehat{ABI}=\widehat{EBI}\)(BI là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABI=ΔEBI(Cạnh huyền-góc nhọn)
Suy ra: AI=EI(hai cạnh tương ứng)