K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

Áp dụng tính chất dãy ti số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

=> đpcm

=>a+c<b+d

mà b+d<c+d

nên a+c<c+d

2 tháng 6 2021

`a)a/b<c/d`
Nhân 2 vế cho `bd>0` ta có:
`(abd)/b<(bcd)/d`
`<=>ad<bc`
`b)ad<bc`
Chia 2 vế cho `bd>0` ta có:
`(ad)/(bd)<(bc)/(bd)`
`<=>a/b<c/d`.

2 tháng 6 2021

Thank>3

2 tháng 7 2023

a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}\) = \(\dfrac{3a}{3c}=\dfrac{2b}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{2a+5b}{2c+5d}\) (1)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{3a}{3c}=\dfrac{2b}{2d}=\dfrac{3a-2b}{2c-2d}\) (2)

Từ (1) và(2) ta có:

\(\dfrac{2a+5b}{2c+5d}\) =  \(\dfrac{3a-2b}{3c-2d}\)(đpcm)

 

 

 

 

2 tháng 7 2023

a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}\)  ⇒ \(\dfrac{a.b}{c.d}\) = \(\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a.b}{c.d}=\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\) = \(\dfrac{a^2+b^2}{c^2+d^2}\) (đpcm)

 

 

7 tháng 3 2020

a(b-c)+a(d+c)=a(b+d)

Ta có :a(b-c)+a(d+c)

= ab - ac + ad + ac 

= ab + ad

= a( b + d ) \(\rightarrow\)ĐPCM

# HOK TỐT #

Biến đổi vế trái ta được:

a(b-c)+a(d+c)

=a(b-c+d+c)

=a(b+d)

=Vế phải (đpcm)