chứng minh rằng 3^0 + 3^1 + 3^2 + ............ + 3^2002 chia hết cho 7 ( hình như sai đề đúng ko mn nếu các bạn làm đc thì chỉ mình với nha )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^8+3^9\right)=\)
\(=4+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)=\)
\(=4\left(1+3^2+3^4+...+3^8\right)⋮4\)
Ta có: S=30+32+34+36+.............+32002
= (30+32+34)+(36+38+310)+......+(31998+32000+32002)
= (30+32+34)+36.(30+32+34)+.......+31998.(30+32+34)
=91+36.91+.......+31998.91
=91.(1+36+...........+31998)
Ta thấy: 91 chia hết cho 7 nên 91.(1+36+...........+31998) chia hết cho 7
Vậy S=30+32+34+36+.............+32002 chia hết cho 7
\(M=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+....+\left(3^{996}+3^{997}+3^{998}+3^{999}\right)\)
M có 1000 số hạng,chia làm 250 cặp như trên.
\(M=40+3^4.\left(40\right)+....+3^{996}.40\)
Mỗi số hạng chia hết cho 40.
=>M chia hết cho 40.
Học tốt^^
\(M=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+....+\left(3^{996}+3^{997}+3^{998}+3^{999}\right)\)
M có 1000 số hạng,chia làm 250 cặp như trên.
\(M=40+3^4.\left(40\right)+....+3^{996}.40\)
Mỗi số hạng chia hết cho 40.
=>M chia hết cho 40.
Học tốt^^
3n + 3 + 3n + 1 + 2n + 3 + 2n + 2
= 3n.33 + 3n.3 + 2n.23 + 2n.22
= 3n.(27 + 3) + 2n.(8 + 4)
= 3n.30 + 2n.12
= 3n.5.6 + 2n.2.6
= 6.(3n.5 + 2n.2) \(⋮\) 6
Câu 1 : (Bạn thông cảm hơi mờ chút )
\(=-301.\left[1+\left(-7\right)^4+\left(-7\right)^7+...+\left(-7\right)^{2005}\right]\)
\(=43.\left(-7\right).\left[1+\left(-7\right)^4+\left(-7\right)^7+...+\left(-7\right)^{2005}\right]\) chia hết cho 43
Câu 3 :
*Điều kiện đủ :
Nếu m và n chia hết cho 3 thì m2 ;n2 và mn chia hết cho 3 do đó m2 + mn + n2 chia hết cho 9
*Điều kiện cần :
Ta có :\(m^2+mn+n^2=\left(m-n\right)^2+3mn\) (*)
Nếu m2 + mn + n2 chia hết cho 9 thì từ (*) ta suy ra (m - n)2 chia hết cho 3 <=> (m - n) chia hết cho 3 (1)
Mà (m - n)2 chia hết cho 9 và 3mn chia hết cho 9 => mn chia hết cho 3 => m hoặc n chia hết cho 3 (2)
Từ (1) và (2) => cả 2 số m,n đều chia hết cho 3
Đề 1:
\(A=2+2^2+2^3+.....+2^{50}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{49}+2^{50}\right)\)
\(A=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{49}.\left(1+2\right)\)
\(A=2.3+2^3.3+.....+2^{49}.3\)
\(A=3.\left(2+2^3+.....+2^{49}\right)\)
\(\Leftrightarrow A⋮3\)
Vậy \(A⋮3\)
Đề 2:
Vì p là số nguyên tố lớn hơn 3
\(\Rightarrow\)p lẻ
\(\Rightarrow\)\(p^2lẻ\)
\(\Rightarrow p^2+2003\)là một số chẵn
mà p > 3
\(\Rightarrow\)\(p^2>3\)
\(\Rightarrow p^2+2003>3\)
\(\Rightarrow p^2+2003\)là hợp số.
Nhớ k cho mình nhé! Thank you!!!