K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC cân tại A có AH là đường cao

nên H là trung điểm của BC

hay HB=HC

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE

hay ΔHDE cân tại H

18 tháng 6 2020

a, 

+) Cách 1: 

Xét △ABC cân tại A (AB = AC) có: AH là phân giác BAC 

=> AH là đường trung trực => ∠AHB = 90o và H là trung điểm BC => HB = HC

+) Cách 2:

Xét △BAH và △CAH

Có: AB = AC (gt)

  ∠BAH = ∠CAH (gt)

   AH là cạnh chung

=> △BAH = △CAH (c.g.c)

=> BH = CH (2 cạnh tương ứng)

P/s: chọn 1 trong 2 cách xong làm tiếp 

Ta có: HB = HC = BC : 2 = 8 : 2 = 4 (cm)

Xét △ABH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)

=> AH2 = AB2 - BH2 = 52 - 42 = 9

=> AH = 3 (cm)

b, 

+) Cách 1: 

Xét △MAH vuông tại M và △NAH vuông tại N

Có: AH là cạnh chung

     ∠MAH = ∠NAH (gt)

=> △MAH = △NAH (cg-gn)

=> AM = AN (2 cạnh tương ứng) => A thuộc đường trung trực của MN

và MH = NH (2 cạnh tương ứng) => H thuộc đường trung trực của MN

=> AH là đường trung trực của MN

+) Cách 2: Gọi AH ∩ MN = { I }

Xét △MAH vuông tại M và △NAH vuông tại N

Có: AH là cạnh chung

     ∠MAH = ∠NAH (gt)

=> △MAH = △NAH (cg-gn)

=> AM = AN (2 cạnh tương ứng)

Xét △MAI và △NAI 

Có: AM = AN (cmt)

   ∠MAI = ∠NAI (gt)

    AI là cạnh chung

=> △MAI = △NAI (c.g.c)

=> MI = NI (2 cạnh tương ứng) => I là trung điểm MN  

và ∠MIA = ∠NIA (2 góc tương ứng)

Mà ∠MIA + ∠NIA = 180o (2 góc kề bù)

=> ∠MIA = ∠NIA = 180o : 2 = 90o

=> AI ⊥ MN

Mà I là trung điểm MN 

=> AI là đường trung trực MN

=> AH là đường trung trực MN  ( AH ∩ MN = { I } )

P/s: chọn 1 trong 2 cách xong làm tiếp 

Vì AM = AN (cmt) => △AMN cân tại A => ∠AMN = (180o - ∠MAN) : 2

Vì △ABC cân tại A => ∠ABC = (180o - ∠BAC) : 2

=> ∠AMN = ∠ABC

Mà 2 góc này nằm ở vị trí đồng vị

=> MN // BC (dhnb)

c, Xét △MAH vuông tại M có: AH > AM (quan hệ giữa đường xiên và đường vuông góc)

Xét △MBH vuông tại M có: BH > MB (quan hệ giữa hình chiếu và đường xiên)

Ta có: 2AH + BC = 2AH + 2BH  (BH = BC : 2  => 2BH = BC)

=> 2AH + 2BH > 2AM + 2MB

=> 2AH + BC > 2(AM + MB) = 2AB

a) Xét tứ giác AEHF có 

\(\widehat{FAE}=90^0\)

\(\widehat{AFH}=90^0\)

\(\widehat{AEH}=90^0\)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: ΔEHB vuông tại E(gt)

mà EN là đường trung tuyến ứng với cạnh huyền HB(N là trung điểm của HB)

nên \(EN=\dfrac{HB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

30 tháng 12 2021

giải giúp mình với ạ mình đang cần gấppppp

 

30 tháng 12 2021

a: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: AH=FE

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có 

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

Suy ra: BH=HC(hai cạnh tương ứng)

9 tháng 2 2021

Giải thích các bước giải:

Ta có :MA=MB,MO⊥AB→MO là trung trực của AB

Tương tự NO là trung trực AC→OA=OB=OC

Mà ΔABC cân tại A→AB=AC→ΔOAB=ΔOAC(c.c.c)

→BAO^=OAC^→AO là phân giác góc A

→AH là phân giacs góc A

Kết hợp ΔABC cân tại A

9 tháng 2 2021

Ta có :MA=MB,MO⊥AB→MO là trung trực của AB

Tương tự NO là trung trực AC→OA=OB=OC

Mà ΔABC cân tại A→AB=AC→ΔOAB=ΔOAC(c.c.c)

→BAO^=OAC^→AO là phân giác góc A

→AH là phân giacs góc A

Kết hợp ΔABC cân tại A

26 tháng 1 2018

Từng bài 1 thôi nha!

Mình làm bài 3 cho dễ

Bn tự vẽ hình

a) CM tg ABH=tg ACH (ch-cgv)

=> HC=HB=2 góc tương ứng 

Nên H là trung điểm BC

=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH

b) Có: tg ABH vuông tại H (AH vuông góc BC)

=> AH2+BH2=AB => AH2+42=52 => AH2=9

Mà AH>O Nên AH=3

c) Xét tg ADH và tg AEH có:

\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)

=> HD=HE(2 góc tương ứng)

=> tg HDE cân tại H