xác định hệ số a,b để A=x^4+2x^3+ax^2+ 2x+b là bình phương của một đa thức
giúp mik nhanh nhé mik đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(A=x^4-2x^3-x^2+ax+b\)
\(A=x^3\left(x-2\right)-x\left(x-a\right)+b\)
Để A là đa thức thì x - a = x -2
Do đó a=2;b=0
Ta có:A=x4−2x3−x2+ax+b
A=x3(x−2)−x(x−a)+b
Để A là đa thức thì x - a = x -2
Do đó a=2;b=0
A là đa thức có hệ số cao nhất là 1
=> A là bình phương của đa thức: \(\left(x^2+cx+d\right)^2\)
Ta có:\(\left(x^2+cx+d\right)^2=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)
=> \(x^4-2x^3+ax+b=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)
Cân bằng hệ số hai vế ta có:
\(2c=-2;2d+c^2=0;2cd=a;d^2=b\)
<=> \(c=-1;d=-\frac{1}{2};a=1;b=\frac{1}{4}\)
Vậy : \(A=x^4-2x^3+x+\frac{1}{4}=\left(x^2-x-\frac{1}{2}\right)^2\)
\(P=x^4-2x^3-x^2+ax+b=\left[\pm\left(x^2+cx+d\right)\right]^2=\left(x^2+cx+d\right)^2\) (vì P là đa thức bậc 4, hệ số tự do là 1)
\(\Leftrightarrow P=x^4+c^2x^2+d^2+2cx^3+2dx^2+2cdx\)
\(\Leftrightarrow P=x^4+2cx^3+\left(c+2d\right)x^2+2cdx+d^2\)
2c = -2 c = -1
=> c2 + 2d = -1 => d = -1
a = 2cd a = 2
b = d2 b = 1
Vậy \(P=\left(x^2-x-1\right)^2\)
Đặt \(F\left(x\right)=x^2-16=0\)( mình sửa đề nhé )
\(\Leftrightarrow x^2=16\Leftrightarrow x=4;x=-4\)
Thay x = 4 vào G(x) ta được : \(32+4a+b=0\)(*)
Thay x = -4 vào G(x) ta được : \(32-4a+b=0\)(**)
Lấy (*) + (**) ta được : \(64+2b=0\Leftrightarrow2b=-64\Leftrightarrow b=-32\)(***)
Thay (***) vào (*) \(32+4a-32=0\Leftrightarrow a=0\)
Vậy ( a ; b ) = ( 0 ; -32 )
Để chứng tỏ x=-1 là một nghiệm của đa thức p(x), ta cần chứng minh rằng p(-1) = 0.
Thay x = -1 vào đa thức p(x), ta được:
p(-1)=(-1)^2 + a(-1) + b = 1 - a + b
Vì a - b = 1, nên ta có thể viết lại a = b + 1. Thay a = b + 1 vào biểu thức trên, ta được:
p(-1) =1- (b + 1) + b = 0
Vậy x = -1 là một nghiệm của đa thức p(x).
Để chứng tỏ x = -1 là một nghiệm của p(x), ta chỉ cần thay x = -1 vào đa thức p(x) và kiểm tra xem có bằng 0 hay không. Ta có:
p(-1) = (-1)^2 + a(-1) + b
= 1 - a + b
= 1 - (a - b) - b
= 1 - 1 - b
= -b
Do đó, nếu p(-1) = 0 thì x = -1 là một nghiệm của p(x). Điều này tương đương với b = 0. Vậy để x = -1 là một nghiệm của p(x), ta cần có điều kiện b = 0.