K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

a, \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\Rightarrow\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{\left(a-c\right)^4}{\left(b-d\right)^4}\) (1)

\(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{5a^4}{5b^4}=\frac{7c^4}{7d^4}=\frac{5a^4+7c^4}{5b^4+7d^4}\)(2)

Từ (1) và (2) => đpcm

b, \(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (3)

\(\frac{a}{b}=\frac{c}{d}=\frac{3c}{3d}=\frac{a-3c}{b-3d}\) (4)

Từ (3) và (4) => đpcm

c, làm giống câu a

8 tháng 10 2017

a) ta có \(\frac{a}{b}=\frac{c}{d}=\frac{a+2c}{b+2d}\left(1\right)\)

            \(\frac{a}{b}=\frac{c}{d}=\frac{a-3c}{b-3d}\left(2\right)\)

(1) và (2) => \(\frac{a+2c}{b+2d}=\frac{a-3c}{b-3d}\)

18 tháng 7 2016

\(\frac{a-c}{c-b}=\frac{a}{b}\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)

\(\Rightarrow ba-bc=ac-ab\)

\(\Rightarrow2ab=ac+bc=c\left(a+b\right)\)

\(\Rightarrow\frac{2ab}{\left(a+b\right)}=c\Rightarrow\frac{a+b}{2ab}=\frac{1}{c}\Rightarrow\frac{1}{2}.\left(\frac{a}{ab}+\frac{b}{ab}\right)=\frac{1}{c}\Rightarrow\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{a}\right)=\frac{1}{c}\)

Câu b ấy, hình như sai đề, phải bằng \(\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}\)có lẽ mới đúng

18 tháng 7 2016

nếu như câu b đề như thế thì bạn có thể giải giúp mình được ko? mình cảm ơn bạn nhé!

10 tháng 3 2020

bài này dễ vào TH 0,5 điểm trong bài thi

nghe có vẻ khó nhưng chú ý 1 chút là có thể làm được

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2016}}{c^{2016}}=\frac{b^{2016}}{d^{2016}}\)\(\Rightarrow\left(\frac{a^{2016}}{c^{2016}}\right)^{2017}=\left(\frac{b^{2016}}{d^{2016}}\right)^{2017}\)

áp dụng t/c dãy t/s = nhau

\(\Rightarrow\left(\frac{a^{2016}}{c^{2016}}\right)^{2017}=\left(\frac{b^{2016}}{d^{2016}}\right)^{2017}=\)\(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}\)

biến đổi tiếp cái kia tương tự rồi suy ra chúng = nhau nhé

10 tháng 4 2022

casi phần áp dụng tc thì phải bằng (a^2016)^2017+(b^2016)^2017 chớ nhỉ bạn hỏi đáp

 

21 tháng 10 2016

a) Gọi số đo của các goác lần lượt là x,y,z

Theo đề bài ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)\(x+y+z=180\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{180}{9}=20\)

=>\(\begin{cases}x=40\\y=60\\z=80\end{cases}\)

21 tháng 10 2016

vì các góc của tam giác tỉ lệ vs 2,3,4 nen ế gọi các góc lần lượt là a,b,c thì a/2=b/3=c/4 vì a,b,c là 3 góc của tam giác nên a+b+c=180

áp dụng gì đó ko nhớ có

a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20

=> a/2=20 nên a=40cm

b/3=20 nên b=60cm

c/4=20 nên c=80cm

vậy 3 cạnh là 40cm,60cm và 80cm

26 tháng 10 2019

A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)

\(=\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)

\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)

\(=\frac{3}{5}+\frac{2}{5}=1\)

26 tháng 10 2019

b) B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6.8^4.3^5}-\frac{5^{10}.7^3:25^5.49}{\left(125.7\right)^3+5^9.14^3}\)

\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.7^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}-7^2}{5^9.7^3+5^9.7^3.2^3}\)

\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^2.\left(7-1\right)}{5^9.7^3\left(1+2^3\right)}\)

 \(=\frac{1}{3.2}-\frac{5.2}{7.3}\)

\(=\frac{7}{3.2.7}-\frac{5.2.2}{7.3.2}\)

\(=\frac{7}{42}-\frac{20}{42}\)

\(=-\frac{13}{42}\)

14 tháng 10 2016

Bạn thêm điều kiện x,y,z lớn hơn 0 nhé :)

Từ giả thiết ta suy ra : \(a^2=b+4032\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+4032\)

\(\Rightarrow xy+yz+zx=2016\)thay vào :

\(x\sqrt{\frac{\left(2016+y^2\right)\left(2016+z^2\right)}{2016+x^2}}=x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}\)

\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+y\right)\left(z+x\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=x\left|y+z\right|=xy+xz\)vì x,y,z > 0

Tương tự : \(y\sqrt{\frac{\left(2016+z^2\right)\left(2016+x^2\right)}{2016+y^2}}=xy+zy\)

\(z\sqrt{\frac{\left(2016+x^2\right)\left(2016+y^2\right)}{2016+z^2}}=zx+zy\)

Suy ra \(P=2\left(xy+yz+zx\right)=2.2016=4032\)