\(M=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}\right)X2X3X4X...X98\)
Chứng minh rằng : M chia hết cho 99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : M= [(1+1/98)+(1/2+1/97)+...+(1/49+1/50)].2.3.4...98
M=(99/1.98+99/2.97+...+99/49.50).2.3.4...98
M=99(1/1.98+1/2.97+...+1/49.50).2.3.4...98
M=99(k1+k2+...+k49/1.2.3.4...97.98).2.3.4...98
M=99(k1+k2+...+k49)
Vậy M chia hết cho 99
Ta có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\)
\(=\left(1+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+\left(\frac{1}{3}+\frac{1}{96}\right)+...+\left(\frac{1}{49}+\frac{1}{50}\right)\)
\(=\frac{99}{1.98}+\frac{99}{2.97}+\frac{99}{3.96}+...+\frac{99}{49.50}\)
\(=99\left(\frac{1}{1.98}+\frac{1}{2.97}+\frac{1}{3.96}+...+\frac{1}{49.50}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right).2.3.4....98\)
\(=99\left(\frac{1}{1.98}+\frac{1}{2.97}+\frac{1}{3.96}+...+\frac{1}{49.50}\right).2.3.4....98\)chia hết cho 99 (đpcm)
\(=\left(\frac{1}{1}+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+....+\left(\frac{1}{49}+\frac{1}{50}\right)=\frac{99}{1\times98}+\frac{99}{2\times97}+.....\frac{99}{49\times50}\)
Ta gọi các thừa số phụ là : \(a_1,a_2,......,a_{49}\)
\(A=\frac{99\times\left(a_1+a_2+.....+a_{49}\right)}{2\times3\times......\times97\times98}\times2\times3\times......\times97\times98\)
\(A=99\times\left(a_1+a_2+.....+a_{49}\right)\)
\(\Rightarrow A:99\)
\(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{97}+\frac{1}{98}=\left(\frac{1}{1}+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{50}\right)\)(Có 98 phân số => có 49 cặp)
\(=\frac{99}{1.98}+\frac{99}{2.97}+...+\frac{99}{49.50}=99.\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right)\)
=> \(A=\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right).1.2.3...98.99\)
=> A : 99 = \(\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right).1.2.3...98=2.3.4...97+1.3.4..96.98+...+1.2.3..48.51...98\)
kết quả là số tự nhiên
=> A chia hết cho 99
\(\frac{1}{2}+\frac{1}{2}+...+\frac{1}{97}+\frac{1}{98}=\left(\frac{1}{1}+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{50}\right)\)( có 98 phân số => có 8 cặp )
\(=\frac{99}{1.98}+\frac{99}{2.97}+...+\frac{99}{49.50}=99.\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right)\)
\(\Rightarrow A=\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right).1.2.3....98.99\)
\(\)A chia hết cho 99.
Tham khảo nha bạn :
Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến
Ta có :
M = \(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{91}+1\right)+...+\left(\frac{98}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(100\)
N = \(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+\left(1-\frac{3}{11}\right)+...+\left(1-\frac{92}{100}\right)}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{8.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}{\frac{1}{5}.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}\)
N = \(40\)
\(\Rightarrow\)M : N = \(\frac{100}{40}\%=250\%\)