Cho tỉ lệ thức \(\frac{3x-y}{x+y}=\frac{3}{4}.\) Tìm giá trị của tỉ số \(\frac{x}{y}\)
Các bạn giúp mk bài này với mk đang cần gấp!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x-y}{x+y}=\frac{3}{4}\Rightarrow12x-4y=3x+3y\Rightarrow9x=7y\Rightarrow\frac{x}{y}=\frac{7}{9}\)
a.
Ta có:\(\frac{-45}{47}>-1\) và \(\frac{51}{-50}< -1\)\(\Rightarrow\)\(\frac{-45}{47}>\frac{51}{-50}\Rightarrow x>y\)
b.
x>y mà
\(\frac{3x-y}{x+y}=\frac{3}{4}\Rightarrow\left(3x-y\right)4=3\left(x+y\right)\)
=>12x-4y=3x+3y
=>12x-4y=3x+3y
=>12x-3x=3y+4y
=>9x=7y
=>x/y=7/9
vậy x/y=7/9
Ta có: \(\frac{3x-y}{x+y}\)=\(\frac{3}{4}\)
\(\Leftrightarrow\)4(3x-y)=3(x+y)
\(\Leftrightarrow\)12x-4y=3x+3y
\(\Leftrightarrow\)12x-3x=4x+3y
\(\Leftrightarrow\)9x=7y
\(\Leftrightarrow\)\(\frac{x}{y}\)=\(\frac{7}{9}\)
\(\frac{3x-y}{x+y}=\frac{3}{4}\Leftrightarrow\frac{3x-y}{x+y}+1=\frac{3}{4}+1\Leftrightarrow\frac{4x}{x+y}=\frac{7}{4}.\) Ở vế trái chia cả tử và mẫu cho y , được:
\(\frac{4.\frac{x}{y}}{\frac{x}{y}+1}=\frac{7}{4}\) Suy ra : \(16.\frac{x}{y}=7\left(\frac{x}{y}+1\right)\) Vậy \(9.\frac{x}{y}=7\Leftrightarrow\frac{x}{y}=\frac{7}{9}\)
Ta có: \(\frac{3x-y}{x+y}=\frac{3}{4}\)
\(\Rightarrow\frac{3x+3y-4y}{x+y}=\frac{3}{4}\)
\(\Rightarrow3-\frac{4y}{x+y}=\frac{3}{4}\)
\(\Rightarrow\frac{4y}{x+y}=3-\frac{3}{4}=\frac{9}{4}\)
\(\Rightarrow4.4y=9.\left(x+y\right)\)
\(\Rightarrow16y=9y+9x\)
\(\Rightarrow9x=16y-9y=7y\)
\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)
Vậy tỉ số \(\frac{x}{y}=\frac{7}{9}\)
Bài 1:
Giải:
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
+) \(\frac{x}{3}=2\Rightarrow x=6\)
+) \(\frac{y}{7}=2\Rightarrow y=14\)
Vậy x = 6, y = 14
b) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
+) \(\frac{x}{5}=2\Rightarrow x=10\)
+) \(\frac{y}{2}=2\Rightarrow y=4\)
Vậy x = 10, y = 4
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
=>x=6; y=14
Phần b) cũng làm như vậy bạn nhé thay nhõn x+y= x-y thôi
tìm x
a)\(\frac{x}{7}=\frac{18}{14}\)
=> x.14=7.18
x.14=126
x=126:14
x=9
Vậy x =9
b)6:x=\(1\frac{3}{4}:5\)
=>x.1^3^4=6.5
x.1^3^4=30
x=30:1^3^4
x=17^1^7
phần c) làm tương tự bạn nhé
\(\frac{3x-y}{x+y}=\frac{3}{4}\)
\(=>4\left(3x-y\right)=3\left(x+y\right)\)
\(12x-4y=3x+3y\)
\(12x-3x=3y+4y\)
\(9x=7y\)
\(=>\frac{x}{y}=\frac{7}{9}\)
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
từ tỉ lệ thức ta có:
4(3x-y)=3(x+y)
12x-4y=3x+3y
9x-4y=3y
9x=7y
x/y=7/9
Ta có \(\frac{3x-y}{x+y}=\frac{3}{4}\)Suy ra 4(3x-y)=3(x+y)
=>12x-4y=3x+3y
=>12x-4y-3x=3y
=>12x-3x=3y+4y
=>9x=7y=>\(\frac{x}{y}=\frac{9}{7}\)
Nhớ k cho mik nha