So sánh A và B biết : A = 1.2+2.4+3.6+4.8+5.10/3.4+6.8+9.12+12.16+15.20 va B = 111111/666665
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh hai phân số A và B:
A = 111111/666665
B = 1.2 + 2.4 + 3.6+4.8+5.10 / 3.4+6.8+9.12+12.16+15.20
A=\(\frac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}\)
A=\(\frac{1.2\left(1+2+3+4+5\right)}{3.4\left(1+2+3+4+5\right)}\)
A=\(\frac{1.2}{3.4}\)
A=\(\frac{1}{6}\)=\(\frac{11111}{66666}\)
Vì\(\frac{11111}{66666}>\frac{11111}{666665}\)
=> A>B
A = \(\frac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}\)
A = \(\frac{1.2.\left(1+2+3+4+5\right)}{3.4.\left(1+2+3+4+5\right)}\)
A = \(\frac{2}{12}=\frac{222222}{1333332}\)
B = \(\frac{111111}{666665}=\frac{222222}{1333330}\)
Vì \(\frac{222222}{1333332}
\(=\frac{14\cdot101+15\cdot101+...+19\cdot101}{20\cdot101+21\cdot101+...+25\cdot101}=\frac{101\cdot\left(14+15+16+17+18+19\right)}{101\cdot\left(20+21+22+23+24+25\right)}\)
\(=\frac{14+15+16+17+18+19}{20+21+22+23+24+25}=\frac{\left(14+19\right)+\left(15+18\right)+\left(16+17\right)}{\left(20+25\right)+\left(21+24\right)+\left(22+23\right)}=\frac{33.3}{45.3}=\frac{33}{45}=\frac{11}{15}\)
Ta có A=\(\frac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}\)
=\(\frac{1.2+2.2.2+3.3.2+4.4.2+5.5.2}{3.4+3.2.4.2+3.3.4.3+3.4.4.4+3.5.4.5}\)
=\(\frac{2.\left(4+9+16+25\right)}{3.4.\left(4+9+16+25\right)}\)
=\(\frac{2}{3.4}=\frac{1}{3.2}=\frac{1}{6}\)
B=\(\frac{111111}{666666}=\frac{1}{6}\)
=>A=B
l-ike mình nha
\(A=\frac{1\cdot2+2\cdot4+3\cdot6+4\cdot8+5\cdot10}{3\cdot2\left(1\cdot2+2\cdot4+3\cdot6+4\cdot8+5\cdot10\right)}=\frac{1}{6}\)
\(B=\frac{111111}{666666}=\frac{1\cdot111111}{6\cdot111111}=\frac{1}{6}\)
Vì 1/6 =1/6 nên A=B
\(\dfrac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}\)
\(=\dfrac{1.2+2.4+3.6+4.8+5.10}{3.4+3.4.2.2+3.4.3.3+3.4.2.8+3.4.5.5}\)
\(=\dfrac{1.2.\left(4+3^2+2.8+5^2\right)}{3.4.\left(4+3^2+2.8+5^2\right)}\)
\(=\dfrac{1}{6}\)
\(\dfrac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}\)
\(=\dfrac{1.2+1.2.2^2+1.2.3^2+1.2.4^2+1.2.5^2}{3.4+3.4.2^2+3.4.3^2+3.4.4^2+3.4.5^2}\)
\(=\dfrac{1.2\left(1+2^2+3^2+4^2+5^2\right)}{3.4\left(1+2^2+3^2+4^2+5^2\right)}\\ =\dfrac{2}{12}=\dfrac{1}{6}\)
Giải
Ta có: \(A=\dfrac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}=\dfrac{1.2\left(1+2.2+3.3+4.4+5.5\right)}{3.4\left(1+2.2+3.3+4.4+5.5\right)}=\dfrac{1.2}{3.4}=\dfrac{1}{6}\)
Vì \(A=\dfrac{1}{6}=\dfrac{111111}{666666}< \dfrac{111111}{666665}=B\)
\(\Rightarrow A< B\)
Vậy \(A< B.\)