K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2016.2017}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2016}-\frac{1}{2017}\)

\(=1-\frac{1}{2017}\)

\(=\frac{2016}{2017}\)

11 tháng 7 2016

                           \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

                       \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

                       \(=1-\frac{1}{2017}\)

                        \(=\frac{2016}{2017}\)

                    Ủng hộ mk nha!!!

6 tháng 3 2019

A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

A = \(1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-...-\left(\frac{1}{2016}-\frac{1}{2016}\right)-\frac{1}{2017}\)

A = \(1-0-0-0...-0-\frac{1}{2017}\)

A = \(1-\frac{1}{2017}< 1\)

6 tháng 3 2019

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(A=1-\frac{1}{2017}=\frac{2016}{2017}< \frac{2017}{2017}=1\)

=> A<1(đpcm)

10 tháng 5 2017

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(=1-\frac{1}{2017}=\frac{2016}{2017}\)

14 tháng 5 2017

A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

   = \(1-\frac{1}{2017}\)

   = \(\frac{2016}{2017}\)

14 tháng 5 2017

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(A=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{2016}+\frac{1}{2016}\right)-\frac{1}{2017}\)

\(A=1+0+0+...+0-\frac{1}{2017}\)

\(A=1-\frac{1}{2017}\)

\(A=\frac{2017}{2017}-\frac{1}{2017}\)

\(A=\frac{2016}{2017}\)

Vậy:  \(A=\frac{2016}{2017}\)

9 tháng 5 2017

\(A=\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+...+\dfrac{4033}{\left(2016.2017\right)^2}\)

\(=\dfrac{3}{1.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{4033}{2016^2.2017^2}\)

\(=\dfrac{1}{1}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{2016^2}-\dfrac{1}{2017^2}\)

\(=1-\dfrac{1}{2017^2}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

Vậy...

28 tháng 6 2017

Ta có : \(A=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+.......+\left(1-\frac{1}{2016.2017}\right)\)

\(\Rightarrow A=\left(1+1+1+......+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{2016.2017}\right)\)

\(\Rightarrow A=2016-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2016}-\frac{1}{2017}\right)\)

\(\Rightarrow A=2016-\left(1-\frac{1}{2017}\right)\)

\(\Rightarrow A=2016-\frac{2016}{2017}=2015\frac{1}{2017}\)

15 tháng 5 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)

\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+......+\left(\frac{1}{2016}-\frac{1}{2017}\right)\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2016}-\frac{1}{2017}\)

\(A=\frac{1}{1}-\frac{1}{2017}\)

\(A=\frac{2016}{2017}\)

15 tháng 5 2017

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow A=1-\frac{1}{2017}\)

\(\Rightarrow A=\frac{2016}{2017}\)

26 tháng 3 2017
C=1.2+2.3+...+2016.2017 C=1.2017 C=2017