- Chứng minh rằng mọi n€N ta luôn có: 1/1.6+1/6.11+1/11.16+.........+1/(5n+1)(5n+6)=n+1/5n+6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\dfrac{1}{5}\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)
\(=\dfrac{1}{5}\cdot\dfrac{5n+6-1}{5n+6}\)
\(=\dfrac{n+1}{5n+6}=VP\)
mình trả lời bài 1 thôi nhé :
Gọi biểu thức trên là A.
Theo bài ra ta có:A=1/1.6+1/6.11+1/11.16+...+1/(5n+1)+1/(5n+6)
=1/5(1-1/6+1/6-1/11+1/11-1/16+...+1/5n+1-1/5n+6)
=1/5(1-1/5n+6)
=1/5( 5n+6/5n+6-1/5n+6)
=1/5(5n+6-1/5n+6)
=1/5.5n+5/5n+6
=n+1/5n+6
=ĐIỀU PHẢI CHỨNG MINH
x- 20/11.13 - 20/13.15 - 20/13.15 - 20/15.17 -...- 20/53.55=3/11
x-10.(2/11.13+2/13.15+2/15.17+...+2/53.55=3/11
x-10.(1/11-1/13+1/13-1/15+1/15-1/17+...+1/53-1/55)=3/11
x-10.(1/11-1/55)=3/11
x-10.4/55=3/11
x-8/11=3/11
x = 3/11+8/11
x=11/11=1
****
\(\dfrac{1}{1\cdot6}+\dfrac{1}{6\cdot11}+\dfrac{1}{11\cdot16}+...+\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}=\dfrac{n+1}{5n+6}\)
\(VT=\dfrac{1}{5}\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)\(=\dfrac{1}{5}\cdot\left(\dfrac{5n+6}{5n+6}-\dfrac{1}{5n+6}\right)\)
\(=\dfrac{1}{5}\cdot\dfrac{5\left(n+1\right)}{5n+6}=\dfrac{n+1}{5n+6}=VP\)
C = 1/1 . 6 + 1/6 . 11 + 1/11 . 16 + ...+ 1/( 5n + 1 ) . ( 5n + 6 )
C = 1/5 . ( 5/1 . 6 + 5/6 . 11 + 5/11 . 16 + ...+ 5/( 5n + 1 ) . ( 5n + 6 ) )
C = 1/5 . ( 1 - 1/6 + 1/6 - 1/11 + 1/11 - 1/16 + ...+ 1/5n + 1 - 1/5n + 6 )
C = 1/5 . ( 1 - 1/5n + 6 )
C = 1/5 . 1 - 1/5 . 1/5n + 6
C = 1/5 - 1/ 5 . ( 5n + 6 )