Cho tam giác ABC vuông tại A, có AB=9cm, BC=15cm.
a.Tính độ dài cạnh AC và so sánh các góc của tam giác ABC.
b.Trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD. Chứng minh tam giác BCD cân
c.Gọi E, F lần lượt là trung điểm của các cạnh DC, BC. Đường thảng BE cắt cạnh AC tại M. Chứng minh ba điểm D,M,F thẳng hàng và tính độ dài CM.
d.Trên cạnh DC lấy điểm H, trên tia đối của tia BC lấy điểm K sao cho DH=BK. Đường thẳng HK cắt cạnh BD tại N. Chứng minh NH=NK
các bạn giải giùm mình ý d là chính thôi còn các ý kia mình chỉ đưa ra để các bạn biết là đã có những cái gì thôi nha
a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
=> AC2 = BC2 - AB2 = 152 - 92 = 225 - 81 = 144
=> AC = 12 (cm)
Ta có: AB < AC < BC
=> \(\widehat{C}< \widehat{B}< \widehat{A}\) (quan hệ giữa cạnh và góc đối diện)
b) Xét t/giác ABC và t/giác ADC
có : \(\widehat{BAC}=\widehat{DAC}=90^0\) (gt)
AB = AD (gt)
AC : chung
=> t/giác ABC = t/giác ADC (c.g.c)
=> BC = DC (2 cạnh t/ứng)
=> t/giác BCD cân tại C
c) Ta có: DE = EC (gt) => BE là đường trung tuyến
AB = AD (gt) => CA là đường trung tuyến
đường trung tuyến BE cắt đường trung cuyến CA tại M
=> M là trọng tâm của t/giác BCD
Ta lại có: BF = FC (gt)
=> DF là đường trung tuyến
=> DF đi qua trọng tâm M
=> D, M, F thẳng hàng
Do M là trọng tâm của t/giác BCD
=> CM = 2/3 AC => CM = 2/3 . 12 = 8 (cm)
d) Qua điểm H, kẻ đường thẳng // với BC cắt BD tại I
Ta có: AB // DI => \(\widehat{K}=\widehat{NHI}\) ; \(\widehat{KBN}=\widehat{NIH}\)(so le trong)
=> \(\widehat{DIH}=\widehat{IBC}\) (đồng vị)
Mà \(\widehat{IBC}=\widehat{D}\) (Vì BCD cân)
=> \(\widehat{HID}=\widehat{D}\)
=> t/giác HID cân tại H
=> DH = BK
mà AH = BK (gt)
=> HI = BK
Xét t/giác KBI và t/giác HIN
có : \(\widehat{K}=\widehat{NHI}\) (cmt)
KB = HI (cmt)
\(\widehat{KBN}=\widehat{NIH}\) (cmt)
=> t/giác KBI = t/giác HIN (g.c.g)
=> KN = NH (2 cạnh t/ứng)