cho tam giác ABC , trung điểm của BC là M , kẻ AD song song với BM,và AD=BM (M và D khác phía đối vs AD) trung điểm của AB là I a) chứng minh 3 điểm M,I,D thảng hàng b) chứng minh AM song song với DB c) trên tia đối của tia AD lấy điểm AE = AD chứng minh ED song song vs DB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì AD // BM (gt) => góc DAB = góc ABM (so le trong)
Xét t/g IAD và t/g IBM có:
IA = IB (gt)
góc DAB = góc ABM
AD = BM (gt)
=> t/g IAD = t/g IBM (c.g.c)
=> góc DIA = góc BIM (2 góc t/ứ), ID = IM
Mà góc DIA + góc DIB = 180 độ (kề bù)
=> góc DIB + góc BIM = 180 độ
=> góc DIM = 180 độ
=> D,I,M thẳng hàng
b, Xét t/g AIM và t/g BID có:
IA = IB (gt)
góc DIB = góc MIA (đối dỉnh)
ID = IM (câu a)
=> t/g AIM = t/g BID (c.g.c)
=> góc IMA = góc BDI (2 góc t/ứ)
=> AM // DB (1)
c, Vì AE // MC => góc EAC = góc ACM (so le trong)
Xét t/g AEC và t/g CMA có:
AE = MC (gt)
góc EAC = góc ACM
AC chung
=> t/g AEC = t/g CMA (c.g.c)
=> góc MAC = góc ACE (2 góc t/ứ)
=> AM // CE (2)
Từ (1) và (2) => DB // CE
Câu a)
Cách khác
Xét tứ giác ADBM có :
AD // BM ( GT )
AD = BM ( GT )
=> tứ giác ADBM là hình bình hành
Mà I là trung điểm AB ( GT )
=> I là trung điểm DM
=> 3 điểm D,I,M thẳng hàng