K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

Xét △DEC và △BAC có

góc D chung

góc CDE= góc CBA (=90)

Vậy △DEC đồng  dạng △BAC (g_g)

=> \(\frac{CD}{BC}=\frac{EC}{CA}\Rightarrow\frac{CD}{EC}=\frac{BC}{CA}\)

Xét △EAC và △DBC có

góc C chung

\(\frac{CD}{EC}=\frac{BC}{CA}\)(cmt)

Vậy △EAC đồng dạng △BDC (c_g_c)

=> góc CEA = góc CDB

Ta chứng minh được tam giác DHB vuông cân (góc H = 90 ,DH=HB)

=>gócHDB=45 hay là là góc BDA =45 (nó cùng là 1 góc nhưng do cách gọi tên thôi)

Ta có

\(\hept{\begin{cases}gocCEA+gocAEB=180^o\\gocCDB+gocBDA=180^0\end{cases}}\) 

Mà góc CEA = góc CDB

=> góc AEB=góc BDA 

Mà góc BDA=45

=> góc AEB=45

Xét tam giác EBA có

góc E=90

góc EBA=45

=>góc DAB =45

=> tam giác ABE vuông cân tại E

=> BA=BE

T I C K nha 

____________________Chúc bạn học tốt ______________________

6 tháng 7 2016

Các bạn giúp mình với ^^ 

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=BC^2+AB^2\)

\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)

hay \(AB=4\sqrt{5}cm\)

Vậy: \(AB=4\sqrt{5}cm\)

Bài 2: 

Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:

\(MP^2=MN^2+NP^2\)

\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)

hay MN=4cm

Vậy: MN=4cm

9 tháng 2 2021

Bài 1 :

- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)

\(\Leftrightarrow AB^2+8^2=12^2\)

\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )

Vậy ...

Bài 2 :

- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :

\(MN^2+NP^2=MP^2\)

\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)

\(\Leftrightarrow MN=4\) ( đvđd )

Vậy ...

 

 

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

27 tháng 10 2021

\(sinC=\dfrac{AB}{AC}\Rightarrow AC=AB:sinC=17:sin67^0\simeq18,5\left(m\right)\)

21 tháng 3 2022

C

Câu 17: Cho ABC có  AB = AC và  = 2   có dạng đặc biệt nào:A.  Tam giác cân                               B. Tam giác đều      C.   Tam giác vuông                          D. Tam giác vuông cânCâu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:A. 7cm                     B. 12,5cm                     C. 5cm                  D. Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại: A. Đỉnh A             B. Đỉnh B             C....
Đọc tiếp

Câu 17: Cho ABC có  AB = AC và  = 2   có dạng đặc biệt nào:

A.  Tam giác cân                               B. Tam giác đều      

C.   Tam giác vuông                          D. Tam giác vuông cân

Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:

A. 7cm                     B. 12,5cm                     C. 5cm                  D.

Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại: 

A. Đỉnh A             B. Đỉnh B             C. Đỉnh C                       D. Tất cả đều sai

Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?

A.  ABM  = ACM                                   B. ABM= AMC

C.  AMB= AMC= 900                             D. AM là tia phân giác CBA

Câu  21: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AH vuông góc với BC(H thuộc BC). Độ dài AH là:

          A. cm            B. 3cm                  C. cm             D. cm

Câu 22: Cho ABC= DEF. Khi đó:                             .

 A. BC = DF                                     B. AC = DF

   C. AB = DF                                   D. góc A = góc E    

Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:

A.   PQ =5cm           B. QR= 5cm            C. PR= 5cm              D.FE= 5cm                           

Câu 24. Cho tam giác MNP cân tại M, . Khi đó,

A.          B.             C.               D.

Câu 25 : Cho ABC= MNP  biết   thì:

A. MNP vuông  tại P                                                  B. MNP vuông  tại M          

C. MNP vuông  tại N                                                  D. ABC vuông tại A

1
15 tháng 3 2022

Câu 17: Cho ABC có  AB = AC và  = 2   có dạng đặc biệt nào:

A.  Tam giác cân                               B. Tam giác đều      

C.   Tam giác vuông                          D. Tam giác vuông cân

Câu 18Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:

A. 7cm                     B. 12,5cm                     C. 5cm                  D.

Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại: 

A. Đỉnh A             B. Đỉnh B             C. Đỉnh C                       D. Tất cả đều sai

Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?

A.  ABM  = ACM                                   B. ABM= AMC

C.  AMB= AMC= 900                             D. AM là tia phân giác CBA

Câu 22Cho ABC= DEF. Khi đó:                             .

 A. BC = DF                                     B. AC = DF

   C. AB = DF                                   D. góc A = góc E    

Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:

A.   PQ =5cm           B. QR= 5cm            C. PR= 5cm              D.FE= 5cm                           

a: Xét ΔABC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

Xét ΔABD vuông tại D và ΔCAD vuông tại  D có

góc DBA=góc DAC

=>ΔABD đồng dạng với ΔCAD

b: góc EAF+góc EDF=180 độ

=>AFDE nội tiếp

=>góc AFD+góc AED=180 độ

=>góc AFD=góc CED

19 tháng 9 2021

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

\(AC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)

Xét ΔABC vuông tại B có 

\(\sin\widehat{A}=\dfrac{BC}{AC}=\dfrac{5\sqrt{34}}{34}\)

nên \(\widehat{A}\simeq59^0\)

hay \(\widehat{C}=31^0\)