K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 3 2022

\(AC=\sqrt{AB^2+BC^2}=2a\) \(\Rightarrow AO=\dfrac{1}{2}AC=a\) ; \(AM=\dfrac{1}{2}AO=\dfrac{a}{2}\)

\(SA\perp\left(ABCD\right)\Rightarrow AC\) là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD) \(\Rightarrow\widehat{SCA}=45^0\)

\(\Rightarrow SA=AC.tan45^0=2a\)

\(AB^2=a^2\) ; \(AM.AC=\dfrac{a}{2}.2a=a^2\Rightarrow AB^2=AM.AC\)

\(\Rightarrow\dfrac{AB}{AM}=\dfrac{AC}{AB}\Rightarrow\Delta ABM\sim\Delta ACB\left(c.g.c\right)\)

\(\Rightarrow\widehat{AMB}=\widehat{ABC}=90^0\Rightarrow BM\perp AC\)

Lại có \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BM\)

\(\Rightarrow BM\perp\left(SAC\right)\Rightarrow\left(SBM\right)\perp\left(SAC\right)\)

NV
11 tháng 3 2022

undefined

6 tháng 11 2017

 phụ nhau nên  D I A ^ = 90 °

9 tháng 6 2019

Giải bài 10 trang 114 sgk Hình học 11 | Để học tốt Toán 11

a) Theo giả thiết, S.ABCD là hình chóp đều và đáy ABCD là hình vuông nên SO ⊥ (ABCD) ( tính chất hình chóp đều)

Đáy ABCD là hình vuông cạnh a nên

Giải bài 10 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 10 trang 114 sgk Hình học 11 | Để học tốt Toán 11

=> Góc giữa hai mặt phẳng (MBD) và (ABCD) là 45 o

28 tháng 7 2018

Chọn đáp án B.

14 tháng 7 2018
15 tháng 6 2018

Đáp án B

Dễ thấy: S C H ^ = 45 ∘  Gọi H là trung điểm của AB ta có  S H ⊥ A B ⇒ S H ⊥ A B C D .

Ta có: S H = H C = a 17 2 .  

Ta có:  d = d M , S A C = 1 2 d D , S A C

Mà 1 2 d D , S A C = 1 2 d B , S A C  nên  d = d H , S A C

Kẻ H I ⊥ A C , H K ⊥ S I ⇒ d H , S A C = H K  

Ta có: H I = A B . A D 2 A C = a 5 5  

Từ đó suy ra: d = H K = S H . H I S I = a 1513 89 .  

a: CD vuông góc AD; CD vuông góc SA

=>CD vuông góc (SAD)

b: BD vuông góc AC; BD vuông góc SA

=>BD vuông góc (SAC)

=>(SBD) vuông góc (SAC)

NV
12 tháng 3 2021

Gọi N là trung điểm AB \(\Rightarrow MN\perp AD\Rightarrow AD\perp\left(SMN\right)\Rightarrow AD\perp SM\)

Mặt khác: \(MN=AB=a\) ; \(SM=SN=\sqrt{SO^2+\left(\dfrac{MN}{2}\right)^2}=\dfrac{a\sqrt{2}}{2}\)

\(\Rightarrow SM^2+SN^2=MN^2\Rightarrow\Delta SMN\) vuông cân tại S hay \(SM\perp SN\)

\(\Rightarrow SM\perp\left(SAD\right)\)

Trong mp (SBC), dựng hình chữ nhật SMCP \(\Rightarrow CP||SM\Rightarrow CP\perp\left(SAD\right)\)

\(\Rightarrow\) SP là hình chiếu vuông góc của SC lên (SAD) hay \(\widehat{CSP}=\phi\) 

\(AC=a\sqrt{5}\Rightarrow SC=\sqrt{SO^2+\left(\dfrac{AC}{2}\right)^2}=\dfrac{a\sqrt{6}}{2}\)\(SP=MC=\dfrac{BC}{2}=a\)

\(\Rightarrow CP=\sqrt{SC^2-SP^2}=\dfrac{a\sqrt{2}}{2}\)

\(sin\phi=\dfrac{CP}{SC}=\dfrac{\sqrt{3}}{3}\)

31 tháng 3 2017

Giải bài 10 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 10 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 10 trang 114 sgk Hình học 11 | Để học tốt Toán 11