1) Tìm số nguyên n thỏa:
\(\sqrt[3]{n+\sqrt{n^2+27}}+\sqrt[3]{n^2+27}=4\)
2) Cho \(am^3=bn^3=cp^3\)và \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}=1\)
Chứng minh rằng:
\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{am^2+bn^2+cp^2}\)
Làm ơn giúp mình với nhé, mình cảm ơn rất nhiều và sẽ hậu hạ tick nhé!
À mình viết lộn đề câu 1, co mình sửa lại nhá!
1) Tìm số nguyên n thỏa:
\(\sqrt[3]{n+\sqrt{n^2+27}}+\sqrt[3]{n-\sqrt{n^2+27}}=4\)
Khi đó nếu bỏ chữ số tận cùng thì số mới là abc
Ta có:
abc3 - abc = (1000a + 100b + 10c + 3) - (100a + 10b + c)
=> 900a + 90b + 9c + 3=1992
=> 900a + 90b + 9c=1989
=> 9(100a + 10b + c)=1989
=> 100a + 10b + c = 221
=> abc = 221
=> abc3 = 2213
Vậy số cần tìm là 2213