K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

a) Tứ giác AEDF có 3 góc vuông nên AEDF là hình chữ nhật.

b) Do D là trung điểm BC nên E, F lần lượt là trung điểm của AB và AC.

Xét tứ giác ADBM có hai đường chéo cắt nhau tại trung điểm mỗi đường nên nó là hình bình hành.

Lại có \(AB\perp MD\) nên ADBM là hình thoi.

Tương tự ADCN cũng là hình thoi.

c) Ta có AB và AC lần lượt là phân giác của góc MAD và NAD 

Vậy nên \(\widehat{MAN}=\widehat{MAD}+\widehat{NAD}=2\left(\widehat{BAD}+\widehat{FAD}\right)=180^o\)

Vậy M, A, N thẳng hàng.

Lại có AM = AD = AN nên A là trung điểm MN.

Hay M, N đối xứng nhau qua A.

d) Để hình chữ nhật AEDF trở thành hình vuông nên AE = AF hay AB = AC.

Vậy để AEDF là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A.

12 tháng 11 2016

a) Tứ giác AEDF là hình chữ nhật 

b) Tam giác ABC có BD = DC

DE//AC  nên AE = BE

ta có DE =EM  ( D đối xứng với M qua AB)Tứ giác ADBM có hai đường chéo cắt nhau tại trung điểm của mỗi dđường nện tứ giác ADBM là hình bình hành.

Tứ giác ADBM  là hinh bình hành có hai đường chéo vuông góc AB vuông góc DM nên tứ giác ADBM là hình thoi

2 tháng 8 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Hình chữ nhật AEDF trở thành hình vuông khi AE = AF

Ta có: AE = 1/2 AB; AF = 1/2 AC

Nên AE = AF ⇒ AB = AC

Vậy nếu ∆ ABC vuông cân tại A thì tứ giác AEDF là hình vuông.

29 tháng 3 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tứ giác AEDF là hình chữ nhật

⇒ DE // AC; DF // AB

Trong ∆ ABC, ta có: DB = DC (gt)

Mà DE // AC

Suy ra: AE = EB (tính chất đường trung bình của tam giác)

Lại có: DF // AB và DB = DC

Suy ra: AF = FC (tính chất đường trung bình của tam giác)

Xét tứ giác ADBM, ta có: AE = EB (chứng minh trên)

ED = EM (vì AB là trung trực DM)

Suy ra tứ giác ADBM là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)

Mặt khác: AB ⊥ DM

Vậy hình bình hành ADBM là hình thoi (vì có hai đường chéo vuông góc)

Xét tứ giác ADCN, ta có: AF = FC (chứng minh trên)

DF = FN (vì AC là đường trung trực DN)

Suy ra tứ giác ADCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường).

Lại có: AC ⊥ DN

Vậy hình bình hành ADCN là hình thoi (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

16 tháng 11 2021

a: Xét tứ giác AEDF có

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

16 tháng 11 2021

Amazing 

 

27 tháng 8 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Điểm M và điểm D đối xứng qua trục AB

Suy ra AB là đường trung trực của đoạn thẳng MD

⇒ AB ⊥ DM ⇒ ∠ (AED) = 90 0

Điểm D và điểm N đối xứng qua trục AC ⇒ AC là đường trung trực của đoạn thẳng DN ⇒ AC ⊥ DN ⇒  ∠ (AFD) =  90 0

Mà  ∠ (EAF) =  90 0 (gt). Vậy tứ giác AEDF là hình chữ nhật (vì có 3 góc vuông).

a: Xét tứ giác AEDF có

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

19 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tứ giác ADBM là hình thoi ⇒ AM // DB và AM = AD

Hay AM // BC và AM = AD (1)

Tứ giác ADCN là hình thoi ⇒ AN // DC và AD = AN

Hay AN // BC và AN = AD (2)

Từ (1) và (2) suy ra: AM trùng với AN hay M, A, N thẳng hàng

Và AM = AN nên A là trung điểm của MN

Vậy điểm M và điểm N đối xứng qua điểm A.

26 tháng 2 2018

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

24 tháng 11 2017

Bạn tự vẽ hình nha!

a, Tứ giác AEDF là hình chữ nhật vì có 3 góc vuông (A=E=F=90 độ)

b, Ta có: D là TĐ của BC, DE vuông góc với AB

nên E là TĐ của AB .

 Tứ giác ADBM có hai đường chéo AB,DM vuông góc với nhau tạ trung điểm của mỗi đường nên là hình thoi

Tương tự : ADCN là hình thoi (Bạn tự chứng minh nha!)

25 tháng 12 2021

Tứ giác AEDF là hình chữ nhậtundefined

⇒ DE // AC; DF // AB

Trong ∆ ABC, ta có: DB = DC (gt)

Mà DE // AC

Suy ra: AE = EB (tính chất đường trung bình của tam giác)

Lại có: DF // AB và DB = DC

Suy ra: AF = FC (tính chất đường trung bình của tam giác)

Xét tứ giác ADBM, ta có: AE = EB (cmt)

ED = EM (vì AB là trung trực DM)

Suy ra tứ giác ADBM là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)

Mặt khác: AB ⊥ DM

Vậy hình bình hành ADBM là hình thoi (vì có hai đường chéo vuông góc)

Xét tứ giác ADCN, ta có: AF = FC (cmt)

DF = FN (vì AC là đường trung trực DN)

Suy ra tứ giác ADCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường).

Lại có: AC ⊥ DN

Vậy hình bình hành ADCN là hình thoi (vì có hai đường chéo cắt nhau)

 

16 tháng 12 2022

a: D đối xứng với M qua AB

nên DM vuông góc với AB tại trung điểm của DM

=>E là trung điểm của DM và AB là phân giác của góc DAM(2)

=>AD=AM; BD=BM

mà DA=DB

nên AD=AM=BD=BM

D đối xứng với N qua AC

nên AC vuông góc với DN tại trung điểm của DN

=>AC là phân giác của góc NAD(1)  và F là trung điểm của DN

Xét tứ giác AEDF có 

góc AED=góc AFD=góc FAE=90 độ

nên AEDF là hình chữ nhật

b: Từ (1), (2) suy ra góc MAN=2*90=180 độ

=>M,A,N thẳng hàng

mà AM=AN

nên A là trung điểm của MN

c: Để AEDF là hình vuông thì AD là phân giác của góc FAE

mà AD là trung tuyến ứng với BC

nên ΔABC cân tại A

=>AB=AC