Độ dài ba cạnh của một tam giác nào sau đây là độ dài ba cạnh của một tam giác vuông? Vì sao?
A. 2cm; 4cm; 5cm | B. 3cm; 4cm; 6cm | C. 4cm; 5cm; 6cm | D. 6cm; 8cm; 10cm |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D nhé theo bất đẳng thức tam giác thì một cạnh bất kì luôn lớn hơn hiệu hai cạnh còn lại và nhỏ hơn tổng hai cạnh đó
Gọi cạnh còn lại có độ dài là x, theo bất đẳng thức tam giác ta có:
10 - 2 < x < 10 + 2 ⇒ 8 < x < 12. Chọn D
Giả sử độ dài cạnh thứ ba là x ( cm ).
Theo hệ quả về bất đẳng thức tam giác ta có:
10 – 2 < x < 10 + 2
Hay 8 < x < 12
Trong các phương án chỉ có phương án D: 9cm thỏa mãn.
Chọn đáp án (D) 9cm.
a) gọi 3 cạnh của tam giác lần lượt là a;b;c ta có
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và a+b+c =60
áp dụng tích chất của dãy tỉ số bằng nhau ta có
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{60}{12}=5\)
\(\frac{a}{3}=5=>a=15\)
\(\frac{b}{4}=5=>b=20\)
\(\frac{c}{5}=5=>c=25\)
a, Gọi 3 cạnh của tam giác lần lượt là x, y, t
Ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{t}{5}\)và \(x+y+t=60\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{t}{5}=\frac{x+y+t}{3+4+5}=\frac{60}{2}=5\)
\(\frac{x}{3}=5\Rightarrow a=15\)
\(\frac{y}{4}=5\Rightarrow a=20\)
\(\frac{t}{5}=5\Rightarrow a=25\)
Vì 6cm = 2cm + 4cm
⇒ Bộ ba đoạn thẳng 2cm, 4cm, 6cm không thỏa mãn bất đẳng thức tam giác nên không phải là ba cạnh của tam giác.
Ta có: 3cm + 2cm = 5cm < 6cm
⇒ Bộ ba đoạn thẳng 2cm, 3cm, 6cm không thỏa mãn bất đẳng thức tam giác nên không phải là ba cạnh của tam giác.
dựa vào bất đẳng thức trong tam giác kiểm tra xem 3 độ dài nào dưới đây là độ dài ba cạnh của một tam giác?
A. 2cm; 3cm; 6cm
B. 7cm; 4cm; 10cm
C. 2cm; 4cm; 6cm
D. 2cm; 3dm; 5cm
c
D. 6cm; 8cm; 10cm