K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2022

bn lm hộ mik vs

20 tháng 1 2022

okee chờ tí

15 tháng 2 2022

a, Xét tam giác ABH và tam giác ACH ta có 

AB = AC (gt) 

AH _ chung

^AHB = ^AHC = 900

Vậy tam giác ABH = tam giác ACH ( ch - cgv ) 

b, Xét tam giác ABC cân tại A

AH là đường cao đồng thời là đường trung tuyến 

=> H là trung điểm BC 

c, Do H là trung điểm BC => HB = 6/2 = 3 cm 

Theo định lí Pytago tam giác AHB vuông tại H

\(AH=\sqrt{AB^2-BH^2}=\sqrt{25-9}=4cm\) 

8 tháng 5 2022

a. vì tam giác ABC cân tại A

=> AB = AC 

=> góc ABC = góc ACB

    BM và CN là 2 đường trung tuyến của tam giác ABC

=> N và M lần lượt là trung điểm của AB và AC

=> AN = BN

     AM = CM

mà AB = AC

=> AN = BN = AM = CM

  Xét tam giác BNC và tam giác CMB:

  BC chung

  góc ABC = góc ACB (cmt)

  BN = CM (cmt)

=>  tam giác BNC = tam giác CMB (c-g-c) (đpcm)

b. tam giác BNC = tam giác CMB (cmt)

=> BM = CN ( 2 cạnh tương ứng)

mà BM giao CN tại K

=> K là trọng tâm của tam giác ABC

=> BK = CK

   Xét Δ AKB và Δ AKC:

 AK chung

 AB = AC (cmt)

 BK = CK (cmt)

=> Δ AKB = Δ AKC (c-c-c)

=> góc BAK = góc CAK (2 góc tương ứng)

=> AK là tia phân giác góc BAC

=> AK là đường trung trực của Δ ABC

=> AK ⊥ BC (đpcm)

c. Vì AK (AH) ⊥ BC

 => tam giác ABH vuông tại H

mà AH là đường trung trực của tam giác ABC

=> BH = CH = \(\dfrac{BC}{2}=\dfrac{6}{2}=3cm\)

Áp dùng định lí Py - ta - go vào tam giác ABH:

 AB2 = BH2 + AH2

 52    =  32   + AH2

AH2  =  52 - 32 = 25 - 9 = 16

=> AK = 4cm (AH > 0) 

8 tháng 5 2022

giúp vs chứ mai thi r !!!

 

9 tháng 3 2020

A B C H

a) Xét tam giác ABH và tam giác ACH có
AB=AC (tam giác ABC cân tại A)

\(\widehat{ABH}=\widehat{ACH}\)(tam giác ABC cân tại A)

BH=HC(H là trung điểm BC)

=> Tam giác ABH = Tam giác ACH (cgc)

b) Vì tam giác ABC cân tại A (gt) và H là trung điểm BC(gt)

=> AH là đường trung tuyến đồng thời là đường cao của tam giác ABC

=> AH vuông góc với BC(đpcm)

9 tháng 3 2020

A C B H E K 1 2

a) Xét t/giác ABH và t/giác ACH

c: AB = AC (gt)

  BH = CH (gt)

  AH: chung

=> t/giác ABH = t/giác ACH (c.c.c)

b) Ta có: t/giác ABH = t/giác ACH (cmt)

=> \(\widehat{AHB}=\widehat{AHC}\)(2 góc t/ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(kề bù)

=> \(\widehat{AHB}=\widehat{AHC}=90^0\)

=> AH \(\perp\)BC

c) Ta có: BH = CH = 1/BC = 1/2.6 = 3 (cm)

Áp dụng định lí Pi - ta - go vào t/giác ABH vuông tại H, ta có:

AB2 = AH2 + BH2 => AH2 = 52 - 32 = 16

=> AH = 4 (cm)

d) Ta có: t/giác AHB = t/giác AHC (cmt)

=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc t/ứng)

Xét t/giác AHE và t/giác AHK

có: \(\widehat{A_1}=\widehat{A_2}\)(cmt)

  AH : chung

\(\widehat{AEH}=\widehat{AKH}=90^0\)(gt)

=> t/giác AHE = t/giác AHK (ch - gn)

=> HE = HK (2 cạnh t/ứng)

e) Ta có: t/giác AHE = t/giác AHK (cmt)

=> AE = AK (2 cạnh t/ứng)

=> t/giác AEK cân tại A

=> \(\widehat{AEK}=\widehat{AKE}=\frac{180^0-\widehat{A}}{2}\)(1)

T/giác ABC cân tại A

=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\)(2)

Từ (1) và (2) => \(\widehat{AEK}=\widehat{B}\)

Mà 2  góc này ở vị trí đồng vị

=> EK // BC

8 tháng 7 2021

A B H C

a,xét ΔAHB VÀ ΔAHC

AB=AC(gt)

góc AHB= góc AHC=900

AH:cạnh chung

⇒ΔAHB=ΔAHC(cạnh huyền- góc nhọn)

⇒AH là đường trung tuyến của ΔABC

b,Ta có HB=1/2 BC

➩HB =1/2*BC

⇒HB=1/2*8

⇒HB=4(cm)

xét ΔAHBcó góc AHB=900

 AB2=AH2+HB2(định lý py -ta- go)

⇒AH2=AB2-HB2

⇒ AH2= 52- 42

⇒AH2=25-16

⇒AH2=9

⇒AH2=(3)2=(-3)2

⇒AH=3(cm)

24 tháng 4 2020

A B C H

a) Xét \(\Delta AHB\)và \(\Delta AHC\)có 

\(AB=AC\left(gt\right)\)

\(AH\)chung

=> \(\Delta AHB=\Delta AHC\)( cạnh huyền - cạnh góc vuông )

=> \(HB=HC\)( hai cạnh tương ứng )

=> H là trung điểm của BC ( đpcm )

b) H là trung điểm của BC => \(HB=HC=\frac{BC}{2}=\frac{8}{2}=4cm\)

Áp dụng định lí Pytago cho tam giác vuông AHC ta có :

\(AC^2=AH^2+HC^2\)

\(5^2=AH^2+4^2\)

\(AH^2=5^2-4^2=9\)

\(AH=\sqrt{9}=3cm\)

Vậy AH = 3cm , CH = 4cm

24 tháng 4 2020

Hình tự vẽ nha

a)Vì tam giác ABC cân tại A(gt)

=>AH vừa là đường cao, vừa là đường trung tuyến

=>H là trung điểm của BC

b)Vì H là trung điểm của BC(cmt)

=>BH=HC=BC/2=8/2=4(cm)

Ta có tam giác ACH vuông tại H(vì AH là đường cao)

Áp dụng định lý Pi-ta-go ta có:

     AC^2=AH^2 + HC^2

=>5^2=AH^2 + 4^2

=>AH^2=25-16=9=>AH=3(cm)

25 tháng 1 2016

HB=HC

AH CẠNH CHUNG

AB=AC (CẠNH HUYỀN)

DO ĐÓ:AHB=AHC (C-C-C)

MÌNH LÀM ĐC NHIU ĐÓ CÒN NHIU BN TỰ LÀM NHÉ!!!

26 tháng 6 2020

A B C H M

a ) Ta có ΔABC cân tại A .

\(\Rightarrow\) AB = AC

Có AH là đường cao

\(\Rightarrow\) AH đồng thời là trung tuyến

\(\Rightarrow\) H là trung điểm của BC

Xét ΔAHB và ΔAHC có :

AB = AC

Góc AHB = Góc AHC = 90 

       BH = HC

\(\Rightarrow\) Δ AHB = Δ AHC ( c - g - c )

b ) Xét ΔAHB vuông tại H có .

\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2=3}\)

c ) Xét ΔABM có BH vừa là đường cao vừa là trung tuyến .

\(\Rightarrow\) ΔABM cân tại B

d ) Ta có : BAM cân tại B 

\(\Rightarrow\) Góc BAM = Góc BMA

Xét ΔBAC cân tại A có HA là trung tuyến

\(\Rightarrow\) AH đồng thời là tia phân giác của ΔABC .

\(\Rightarrow\) Góc BAH = Góc CAH

\(\Rightarrow\) Góc BMA = Góc HAC

Mà 2 góc này ở vị trí so le trong của BM và AC .

\(\Rightarrow\) BM // AC

26 tháng 6 2020

A B C H M

a) ( Cái này có khá nhiều cách chứng minh nhé . )

Xét tam giác vuông AHB và tam giác vuông AHC có :

AB = AC ( tam giác ABC cân )

AH chung 

=> Tam giác vuông AHB = tam giác vuông AHC ( ch-cgv )

b) => HB = HC ( hai cạnh tương ứng )

Mà BC = 8cm

=> HB = HC = BC/2 = 8/2 = 4cm

Áp dụng định lí Pytago cho tam giác vuông AHB ( AHC cũng được ) ta có :

AB2 = AH2 + HB2

52 = AH2 + 42

=> \(AH=\sqrt{5^2-4^2}=\sqrt{25-16}=3cm\)

c) HM là tia đối của HA

=> ^AHB + ^BHM = 1800

=> 900 + ^BHM = 1800

=> ^BHM = ^AHB = 900 => Tam giác BHM vuông tại H

Xét tam giác vuông AHB và tam giác vuông BHM ta có :

HM = HA ( gt )

 ^BHM = ^AHB ( cmt ) 

HB chung

=> Tam giác AHB = tam giác BHM ( c.g.c )

=> BM = BA ( hai cạnh tương ứng )

Tam giác ABM có BM = BA ( cmt ) => Tam giác ABM cân tại B

d) Ta có : Tam giác AHB = Tam giác AHC ( theo ý a) 

Tam giác AHB = Tam giác BHM ( theo ý c) 

Theo tính chất bắc cầu => Tam giác AHC = tam giác BHM 

=> ^HBM = ^ACH ( hai góc tương ứng )

mà hai góc ở vị trí so le trong 

=> BM // AC ( đpcm )

( Hình có thể k đc đẹp lắm )