K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2016

\(a.199^{20}< 200^{20}=200^{15}.200^5\)

\(2003^{15}>2000^{15}=200^{15}.10^{15}=200^{15}.\left(10^3\right)^5=200^{15}.1000^5\)

\(Vì200^{15}.200^5< 200^{15}.1000^5\)

\(=>199^{20}< 2003^{15}\)

\(b.3^{99}=\left(3^3\right)^{33}=27^{33}\)

\(Vì27^{33}>11^{21}\)

\(=>3^{99}>11^{21}\)

Ủng hộ mk nha ^_-

20 tháng 2 2021

a) 536 và 1124

Ta có: 536= (53)12=12512  (1)

             1124=(112)12=12112 (2)

Từ (1) và (2) => 536>1124

tương tự.....

 

20 tháng 2 2021

Đáp án là :

câu 20 :625 < 1257

câu 21 :536 > 1124

câu 22 :32n < 23n

câu 23 :523 < 6.522

câu 24 :1124 <19920

câu 25 :399 > 112

22 tháng 9 2021

\(3^{99}=\left(3^3\right)^{33}=27^{33}>27^{21}>11^{21}\\ 16^x< 128^4\\ \Rightarrow\left(2^4\right)^x< \left(2^7\right)^4\\ \Rightarrow2^{4x}< 2^{28}\Rightarrow4x< 28\Rightarrow x< 7\)

22 tháng 9 2021

no

a) \(243^5=\left(3^5\right)^5=3^{25}\)

\(3\cdot27^5=3\cdot\left(3^3\right)^5=3\cdot3^{15}=3^{16}\)

mà \(3^{25}>3^{16}\)

nên \(243^5>3\cdot27^5\)

b) \(625^5=\left(5^4\right)^5=5^{20}\)

\(125^7=\left(5^3\right)^7=5^{21}\)

mà \(5^{20}< 5^{21}\)

nên \(625^5< 125^7\)

c) \(202^{303}=\left(202^3\right)^{101}=8242408^{101}\)

\(303^{202}=\left(303^2\right)^{101}=91809^{101}\)

mà \(8242408^{101}>91809^{101}\)

nên \(202^{303}>303^{202}\)

 

22 tháng 9 2021

\(1,\\ 16^x< 128^4\Rightarrow\left(2^4\right)^x< \left(2^6\right)^4\Rightarrow2^{4x}< 2^{24}\\ \Rightarrow4x=24\Rightarrow x=6\\ 2,\\ 3^{99}=\left(3^3\right)^{33}=27^{33}>27^{21}>11^{21}\)

a: Ta có: \(3^{2x+1}< 27\)

\(\Leftrightarrow2x+1< 3\)

\(\Leftrightarrow x< 1\)

hay x=0

21 tháng 9 2021

1. 

a. 32x + 1 < 27

<=> 32x + 1 < 33

<=> 2x + 1 < 3

<=> 2x < 2

<=> 2x : 2 < 2 : 2

<=> x < 1

30 tháng 11 2021

199^20 < 2003^15

30 tháng 11 2021

19920<200315