1+2+3+4+...+100
Tìm số hạng thứ 100 của dãy
Tính tổng dãy số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{1}{2};\dfrac{1}{6};\dfrac{1}{12};\dfrac{1}{20};...;\dfrac{1}{x}\)
\(=\dfrac{1}{1.2};\dfrac{1}{2.3};\dfrac{1}{3.4};\dfrac{1}{4.5};...;\dfrac{1}{n\left(n+1\right)}\)
=> Số hạng thứ 100 và 2022 lần lượt là: \(\dfrac{1}{100.101}=\dfrac{1}{10100};\dfrac{1}{2022.2023}=\dfrac{1}{4090506}\)
Tổng 100 số hạng đầu tiên:
- Ta có: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...\)
\(\Rightarrow=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...+\left(-\dfrac{1}{100}+\dfrac{1}{100}\right)-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)
-Dãy số tổng quát:
\(\dfrac{1}{2};\dfrac{1}{6};\dfrac{1}{12};\dfrac{1}{20};...;\dfrac{1}{n\left(n+1\right)}\)(n thuộc N*)
-Số hạng thứ 100 của dãy: \(\dfrac{1}{100\left(100+1\right)}=\dfrac{1}{10100}\)
-Số hạng thứ 2022 của dãy: \(\dfrac{1}{2022\left(2022+1\right)}=\dfrac{1}{4090506}\)
- Tổng 100 số hạng đầu tiên của dãy:
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{10100}\)=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{100.101}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
=\(1-\dfrac{1}{101}=\dfrac{100}{101}\)
Ta sử dụng công thức truy hồi để tìm các số hạng tiếp theo trong dãy:
\(1;3;2;-1;-3;-2;1;3;2;-1;-3;-2...\)
Từ đó ta nhận thấy quy luật:
\(u_n=1\) nếu \(n=6k+1\)
\(u_n=3\) nếu \(n=6k+2\)
\(u_n=2\) nếu \(n=6k+3\)
\(u_n=-1\) nếu \(n=6k+4\)
\(u_n=-3\) nếu \(n=6k+5\)
\(u_n=-2\) nếu \(n=6k\)
Đồng thời:
\(u_3=u_2-u_1\)
\(u_4=u_3-u_2\)
...
\(u_{99}=u_{98}-u_{97}\)
\(u_{100}=u_{99}-u_{98}\)
Cộng vế với vế:
\(u_3+u_4+...+u_{100}=u_{99}-u_1\)
\(\Leftrightarrow u_1+u_2+...+u_{100}=u_2+u_{99}=3+u_{6.16+3}=3+2=5\)
1. Số thứ 100 là :
1 + ( 100 - 1 ) x 3 = 298
2.Tổng của 100 số hạng đầu tiên là :
( 298 + 1 ) x 100 : 2 = 14950
3. Các số 111 , 22222 không có trong dãy số
nhớ k nha
1) ta có : ( x - 1 ) : 3 + 1 = 100
( x - 1 ) : 3 = 99
x - 1 = 297
=> x = 298
vậy số thứ 100 của dãy là 298
Số hạng 1: 3=1x3
Số hạng 2:15=3x5
Số hạng 3: 35=5x7
Số hạng 4: 63=7x9
Số hạng 5: 99=9x11
.............................
Nhận xét: Mỗi số hạng là tích của 2 thừa số thừa số, hiệu giữa 2 thừa số là 2 trong đó thừa số thứ nhất của số hạng tiếp theo bằng thừa số thứ 2 của số hạng liền trước.
Như vậy các thừa số thứ nhất của các số hạng lập thành dãy số cách đều bắt đầu từ 1 có khoảng cách là 2
Xuất phát từ công thức tính số các số hạng của dãy số cách đều
\(n=\frac{a_n-a_1}{d}+1\Rightarrow100=\frac{a_n-1}{2}\Rightarrow a_n=201.\)
Như vậy thừa số thứ nhất của số hạng thứ 100 là 201 nên thừa số thứ 2 của số hạng thứ 100 là
201+2=203
Số hạng thứ 100 là
201x203=40803
Tổng của 100 số hạng đó là
A=1x3+3x5+5x7+7x9+9x11+...+201x203
6xA=1x3x6+3x5x6+5x7x6+7x9x6+9x11x6+...+201x203x6
6xA=1x3x(5+1)+3x5x(7-1)+5x7x(9-3)+7x9x(11-5)+9x11x(13-7)+...+201x203(205-199)
6xA=3+1x3x5-1x3x5+3x5x7-3x5x7+5x7x9-5x7x9+9x11x13-....-199x201x203+201x203x205=3+201x203x205=8364618
A=8364618:6=1394103
bang 5050
vi tong cua so dau va cuoi bang 101 ma co 50 cap nhu the lay 101 nhan 50 bang 5050