K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =>|x-7|=3-2x

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(-2x+3\right)^2-\left(x-7\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(2x-3-x+7\right)\left(2x-3+x-7\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(x+4\right)\left(3x-10\right)=0\end{matrix}\right.\Leftrightarrow x=-4\)

b: =>|2x-3|=4x+9

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(4x+9-2x+3\right)\left(4x+9+2x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(2x+12\right)\left(6x+6\right)=0\end{matrix}\right.\Leftrightarrow x=-1\)

c: =>3x+5=2-5x hoặc 3x+5=5x-2

=>8x=-3 hoặc -2x=-7

=>x=-3/8 hoặc x=7/2

3 tháng 2 2022

f. 5 – (x – 6) = 4(3 – 2x)

<=>5-x+6=12-8x

<=>7x=1

<=>x=\(\dfrac{1}{7}\)

g. 7 – (2x + 4) = – (x + 4)

<=>7-2x-4=-x-4

<=>x=7

h. 2x(x+2)\(^2\)−8x\(^2\)=2(x−2)(x\(^2\)+2x+4)

<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

<=>\(2x^3+8x^2+8x-8x^2=2\left(x^3-8\right)\)

<=>\(2x^3+8x=2x^3-16\)

<=>\(8x=-16\)

<=>\(x=-2\)

i. (x−2\(^3\))+(3x−1)(3x+1)=(x+1)\(^3\)

<=>\(x-8+9x^2-1=x^3+3x^2+3x+1\)

<=>\(6x^2-2x-10=0\)

<=>\(3x^2-x-5=0\)

<=>\(\left[{}\begin{matrix}x=\dfrac{1+\sqrt{61}}{6}\\x=\dfrac{1-\sqrt{61}}{6}\end{matrix}\right.\)

k. (x + 1)(2x – 3) = (2x – 1)(x + 5)

<=>\(2x^2-x-3=2x^2+9x-5\)

<=>10x=2

<=>\(x=\dfrac{1}{5}\)

3 tháng 2 2022

f. 5 – (x – 6) = 4(3 – 2x)

<=>5-x+6=12-8x

<=>7x=1

<=>x=\(\dfrac{1}{7}\)

g. 7 – (2x + 4) = – (x + 4)

<=>7-2x-4=-x-4

<=>x=7

h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

<=>\(2x^3+8x^2+8x-8x^2=2x^3-16\)

<=>\(8x=-16\)

<=>x=-2

i.\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)

<=>\(x^3-6x^2+12x+8+9x^2-1=x^3+3x^2+3x+1\)

<=>\(9x+6=0\)

<=>x=\(\dfrac{-2}{3}\)

k. (x + 1)(2x – 3) = (2x – 1)(x + 5)

<=>\(2x^2-x-3=2x^2+9x-5\)

<=>10x=2

<=>x=\(\dfrac{1}{5}\)

28 tháng 8 2021

a) \(x^4-x^2+\dfrac{1}{4}-\dfrac{225}{4}=0\\ \left(x^2-\dfrac{1}{2}\right)^2-\dfrac{15}{2}^2=0\\ \left(x+7\right)\left(x-8\right)=0\\ \left[{}\begin{matrix}x=8\\x=-7\end{matrix}\right.\)

Vậy x = 8 hoặc x = -7

 

a: Ta có: \(x^4-x^2-56=0\)

\(\Leftrightarrow x^4-8x^2+7x^2-56=0\)

\(\Leftrightarrow\left(x^2-8\right)\left(x^2+7\right)=0\)

\(\Leftrightarrow x^2-8=0\)

hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)

28 tháng 8 2021

\(a,\) Đặt \(x^2+2x=a\), pt trở thành:

\(a^2-3a+2=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=0\left(1\right)\\x^2+2x-2=0\left(2\right)\end{matrix}\right.\)

\(\left[{}\begin{matrix}\Delta\left(1\right)=4+4=8\\\Delta\left(2\right)=4+8=12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{-2-\sqrt{8}}{2}\\x=\dfrac{-2+\sqrt{8}}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{-2-\sqrt{12}}{2}\\x=\dfrac{-2+\sqrt{12}}{2}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1-\sqrt{2}\\x=-1+\sqrt{2}\\x=-1-\sqrt{3}\\x=-1+\sqrt{3}\end{matrix}\right.\)

\(b,\) Đặt \(x^2+x=b\), pt trở thành:

\(b\left(b+1\right)-6=0\\ \Leftrightarrow b^2+b-6=0\\ \Leftrightarrow\left[{}\begin{matrix}b=2\\b=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\\x\in\varnothing\left[x^2+x+3=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\right]\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

\(d,x^4-2x^3+x=2\\ \Leftrightarrow x^4-2x^3+x-2=0\\\Leftrightarrow\left(x^3+1\right)\left(x-2\right)=0 \\ \Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2+x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x\in\varnothing\left[x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\right]\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:

a. 

PT $\Leftrightarrow (x^2+2x)^2-(x^2+2x)-2[(x^2+2x)-1]=0$

$\Leftrightarrow (x^2+2x)(x^2+2x-1)-2(x^2+2x-1)=0$

$\Leftrightarrow (x^2+2x-1)(x^2+2x-2)=0$

$\Leftrightarrow x^2+2x-1=0$ hoặc $x^2+2x-2=0$

$\Leftrightarrow x=-1\pm \sqrt{2}$ hoặc $x=-1\pm \sqrt{3}$

b.

PT $\Leftrightarrow (x^2+x)^2+(x^2+x)-6=0$

$\Leftrightarrow (x^2+x)^2-2(x^2+x)+3(x^2+x)-6=0$

$\Leftrightarrow (x^2+x)(x^2+x-2)+3(x^2+x-2)=0$

$\Leftrightarrow (x^2+x-2)(x^2+x+3)=0$

$\Leftrightarrow x^2+x-2=0$ (chọn) hoặc $x^2+x+3=0$ (loại do $x^2+x+3=(x+0,5)^2+2,75>0$)

$\Leftrightarrow x=-1\pm \sqrt{3}$

c. Nghiệm khá xấu. Bạn coi lại đề.

d.

PT $\Leftrightarrow x^3(x-2)+(x-2)=0$

$\Leftrightarrow (x^3+1)(x-2)=0$

$\Leftrightarrow x^3+1=0$ hoặc $x-2=0$

$\Leftrightarrow x=-1$ hoặc $x=2$

 

16 tháng 12 2022

1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)

=>-13x=0

=>x=0

2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)

=>3x=13

=>x=13/3

3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)

=>-2x^2=0

=>x=0

4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)

=>-8x=6-14=-8

=>x=1

16 tháng 12 2022

`1)2x(x-5)-(3x+2x^2)=0`

`<=>2x^2-10x-3x-2x^2=0`

`<=>-13x=0`

`<=>x=0`

___________________________________________________

`2)x(5-2x)+2x(x-1)=13`

`<=>5x-2x^2+2x^2-2x=13`

`<=>3x=13<=>x=13/3`

___________________________________________________

`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`

`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`

`<=>x=0`

___________________________________________________

`4)5x(x-1)-(x+2)(5x-7)=0`

`<=>5x^2-5x-5x^2+7x-10x+14=0`

`<=>-8x=-14`

`<=>x=7/4`

___________________________________________________

`5)6x^2-(2x-3)(3x+2)=1`

`<=>6x^2-6x^2-4x+9x+6=1`

`<=>5x=-5<=>x=-1`

___________________________________________________

`6)2x(1-x)+5=9-2x^2`

`<=>2x-2x^2+5=9-2x^2`

`<=>2x=4<=>x=2`

31 tháng 3 2022

bạn tải ảnh về r up lại đi bạn

31 tháng 3 2022

\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)

\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)

\(\Leftrightarrow-28x+37\ge12\)

\(\Leftrightarrow-28x\ge12-37\)

\(\Leftrightarrow-28x\ge-25\)

\(\Leftrightarrow x\le\dfrac{25}{28}\)

Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)

b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)

\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)

\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)

\(\Leftrightarrow-6x\ge30\)

\(\Leftrightarrow x\le-5\)

Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)

\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)

\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)

\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)

\(\Leftrightarrow-11x+37< 0\)

\(\Leftrightarrow-11x< -37\)

\(\Leftrightarrow x>\dfrac{37}{11}\)

vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)

a) Ta có: \(2x^3+5x^2-3x=0\)

\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)

\(\Leftrightarrow x\left(2x^2+6x-x-3\right)=0\)

\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)

b) Ta có: \(2x^3+6x^2=x^2+3x\)

\(\Leftrightarrow2x^2\left(x+3\right)=x\left(x+3\right)\)

\(\Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)

c) Ta có: \(x^2+\left(x+2\right)\left(11x-7\right)=4\)

\(\Leftrightarrow x^2+11x^2-7x+22x-14-4=0\)

\(\Leftrightarrow12x^2+15x-18=0\)

\(\Leftrightarrow12x^2+24x-9x-18=0\)

\(\Leftrightarrow12x\left(x+2\right)-9\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(12x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\12x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\12x=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{-2;\dfrac{3}{4}\right\}\)

25 tháng 1 2021

Trong đó có nhiều phương trình kiến thức cơ bản mà nhỉ? Ít nâng cao, bạn lọc ra câu nào k làm đc thôi chứ!

b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)

\(\Leftrightarrow x^2+7x+6=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)