K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2022

3434434334433

11 tháng 2 2016

 Coi giá bán ngày thường là 100% thì giá bán ngày 1 - 6 là:
100% - 10% = 90%
Cửa hàng vẫn còn lãi 8% tức là cửa hàng bán được: 100% + 8% = 108% (giá mua)
Số tiền lãi tính theo giá mua là:
100 : 90 x 108 = 120% (giá mua)
Vậy ngày thường thì cửa hàng lãi được:
120% - 100% = 20%

11 tháng 2 2016

 ta có góc ACD=góc ABD (vì tam giác ABC cân tại A)
ta lại có góc ACD=góc NCE(đối đỉnh)
từ và => góc NCE=góc ABD
tam giác MBD và tam giác NCE có 
góc NCE=góc ABD
BD=CE
góc MDB=góc NEC=90 độ
=>tam giác MBD = tam giác NCE =>  DM=EN

13 tháng 3 2023

a) Vì ΔABCΔ��� cân tại A(gt)�(��)

=> ˆABC=ˆACB���^=���^ (tính chất tam giác cân).

Mà ˆACB=ˆNCE���^=���^ (vì 2 góc đối đỉnh).

=> ˆABC=ˆNCE.���^=���^.

Hay ˆMBD=ˆNCE.���^=���^.

Xét 2 ΔΔ vuông BDM��� và CEN��� có:

ˆBDM=ˆCEN=900(gt)���^=���^=900(��)

BD=CE(gt)��=��(��)

ˆMBD=ˆNCE(cmt)���^=���^(���)

=> ΔBDM=ΔCENΔ���=Δ��� (cạnh góc vuông - góc nhọn kề).

=> DM=EN��=�� (2 cạnh tương ứng).

b) Xét 2 ΔΔ vuông DMI��� và ENI��� có:

ˆMDI=ˆNEI=900(gt)���^=���^=900(��)

DM=EN(cmt)��=��(���)

ˆDIM=ˆEIN���^=���^ (vì 2 góc đối đỉnh)

=> ΔDMI=ΔENIΔ���=Δ��� (cạnh góc vuông - góc nhọn kề).

=> MI=NI��=�� (2 cạnh tương ứng).

=> I là trung điểm của MN.��.

Mà I∈BC(gt)�∈��(��)

=> Đường thẳng BC�� cắt MN�� tại trung điểm I của MN(đpcm).��(đ���).

 

 

a: Xét ΔMBD vuông tại D và ΔNCE vuông tại E có 

DB=CE

\(\widehat{MBD}=\widehat{NCE}\left(=\widehat{ACB}\right)\)

Do đó: ΔMBD=ΔNCE

Suy ra: DM=EN

4 tháng 3 2022

-Câu 1,2 của bài này na ná với nhau á, bạn tham khảo:

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-tren-canh-bc-lay-d-d-khong-trung-b-va-bdbc2-tren-tia-doi-cua-tia-cb-lay-e-sao-cho-bdce-cac-duong-vuong-goc-voi-bc-ke-tu-d-va-e-cat-duong-thang-ab-va-ac-lan-luot-tai.4784314158042

5 tháng 3 2022

c. -Kẻ tia phân giác của \(\widehat{BAC}\) cắt đường vuông góc với MN (tại I) tại F.

-Xét △ABF và △ACF:

\(AB=AC\) (△ABC cân tại A).

\(\widehat{BAF}=\widehat{CAF}\) (AF là tia phân giác của \(\widehat{BAC}\))

AF là cạnh chung.

\(\Rightarrow\)△ABF=△ACF (c-g-c).

\(\Rightarrow BF=CF\) (2 cạnh tương ứng).

\(\widehat{ABF}=\widehat{ACF}\) (2 góc tương ứng).

-Xét △MIF và △NIF:

\(MI=IN\left(cmt\right)\)

\(\widehat{MIF}=\widehat{NIF}=90^0\)

IF là cạnh chung.

\(\Rightarrow\)△MIF=△NIF (c-g-c).

\(\Rightarrow MF=NF\) (2 cạnh tương ứng).

-Xét △BMF và △CNF:

\(BM=NC\)(△MBD=△NCE)

\(MF=NF\left(cmt\right)\)

\(BF=CF\left(cmt\right)\)

\(\Rightarrow\)△BMF=△CNF (c-c-c).

\(\Rightarrow\widehat{MBF}=\widehat{NCF}\) (2 cạnh tương ứng).

Mà \(\widehat{MBF}=\widehat{MCF}\)(cmt)

\(\Rightarrow\widehat{NCF}=\widehat{MCF}\)

Mà \(\widehat{NCF}+\widehat{MCF}=180^0\) (kề bù)

\(\Rightarrow\widehat{NCF}=\widehat{MCF}=\dfrac{180^0}{2}=90^0\)

\(\Rightarrow\)AB⊥BF tại B.

\(\Rightarrow\) F là giao của đường vuông góc với AB tại B và tia phân giác của góc \(\widehat{BAC}\).

\(\Rightarrow\)F cố định.

-Vậy đường thẳng vuông góc với MN luôn đi qua điểm cố định khi D thay đổi trên đoạn BC.

28 tháng 2 2016

Mk chỉ cần vẽ hình thôi